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1 Introduction

An important objective of financial regulation is to foster sound risk management among system-

ically important financial institutions, such as large banks, pension funds, insurance companies

and dealers. Part of the regulatory toolkit consists of enforcing limits on the types of assets and

portfolios that financial institutions can hold. For example, some jurisdictions allow a wide variety

of financial institutions to trade in complex securities, such as interest rate and foreign exchange

derivatives, while others restrict some of them to trade only in common securities such as stocks

and bonds.1 Financial institutions may also face constraints on particular trading strategies, such

as bans on “naked” trades of credit default swaps if buyers do not also hold the underlying bond.

There are natural benefits to allowing financial institutions to make portfolio decisions

without restrictions. Absent others frictions, access to a richer trading opportunities allows them

to realize more gains from trade. However, recent evidence suggests that many markets in which

these investors trade, such as those for interest rate swaps, corporate bonds, credit default swaps,

and asset-backed securities, have limited competition and liquidity, and that these factors can

induce institutions to distort their portfolios and take on excessive risk.2 It is thus unclear whether

unfettered access to these markets indeed promotes better risk management by these institutions.

In this paper, we investigate how imposing portfolio constraints on financial institutions

impacts how they share risks in illiquid financial markets. Our key insight is that, when there

are investors with market power who trade strategically with price impact, suitably chosen port-

folio constraints which render markets incomplete can improve risk sharing and generate Pareto

improvements relative to complete markets. The reason is that market incompleteness deters the

strategic exploitation of market power by large investors. As an application of our theory, we

show that portfolio restrictions on credit default swaps (CDS), such as bans on “naked” CDS po-

sitions of the type previously imposed in Europe, can increase overall risk-sharing efficiency even

1Portfolio regulation of financial institutions has historically varied across jurisdictions. For instance, the European
Union and South Africa do not allow pension funds to trade derivatives, but the United States and United Kingdom are
more permissive. Moreover, New York recently passed a bill raising the investment cap for pension funds on alternative
assets, while the United Kingdom relaxed its stringent default fund charge cap to ease investment in alternative assets.

2For evidence of market concentration and limited liquidity in interest rates swap, credit default swap, corporate
bond, and asset-backed security markets, see Khetan, Li, Neamtu, and Sen (2023), D’Errico, Battiston, Peltonen, and
Scheicher (2018) and Peltonen, Scheicher, and Vuillemey (2014), Goldstein and Hotchkiss (2020), and Harkrader and
Puglia (2020), respectively. For evidence of strategic trading by financial institutions that led to poor risk sharing, see
Pinter and Walker (2023), Becker, Opp, and Saidi (2022), Pinter, Siriwardane, and Walker (2024).
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if they raise asset-specific measures of illiquidity, such as bond bid-ask spreads.

Understanding the costs and benefits of portfolio regulation is not straightforward. The

key issue is cross-asset spillovers: imposing restrictions on one market may change liquidity in

other markets, and it is the aggregate effect which is relevant for overall efficiency. To address

this issue, we propose a general equilibrium model of strategic trading in imperfectly competitive

financial markets subject to arbitrary constraints on portfolio formation. Our model accounts for

spillovers across assets, satisfies no arbitrage despite strategic trading, features non-linear price

impact, and permits flexible heterogeneity in gains from trade. As such, it is a useful laboratory

to assess the general equilibrium effects of portfolio regulation on liquidity and welfare.

We study an endowment economy in which risk averse investors with convex marginal

utility (i.e., CRRA preferences) trade to share risks. There are competitive investors as well as a

finite number of large investors with price impact. The fundamental friction is that investors with

price impact distort their portfolios to capture price concessions. These distortions take the form of

asset-level wedges between private valuations and market prices, with sellers rationing supply to

raise prices and buyers rationing demand to lower prices. In equilibrium, this leads to inefficient

risk sharing relative to the first best because there are lost gains from trade. These distortions are

severe when price impact is high (so that small changes in volume have large effects), and when

investors have relatively flat marginal utility (so that changes in volumes have low private costs).

They are also amplified by an illiquidity externality that arises from non-linear price impact.

Given that investors trade across many asset markets, knowledge of asset-level wedges

is not sufficient to characterize the aggregate consequences of strategic rationing. We therefore

develop a method which allows us to characterize the aggregate distortions from price impact di-

rectly in terms of risk exposures and gains from trade rather than asset-level wedges. In particular,

given investors’ state prices we can determine which risk exposures are efficiently allocated and

which gains from trade are left unrealized. Because distortions vary with the set of portfolios that

can be traded, i.e., the asset span, they can be affected by regulation.

We then assess the scope for regulatory interventions by characterizing constrained efficient

asset spans. In line with the classic compensation principle (Boadway and Bruce (1984)), we say that

an asset span is constrained efficient if the regulator cannot engineer a Pareto improvement by al-

tering the asset span and imposing budget-balanced transfers across agents at date one. Our main
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insight is that, under a relatively weak technical condition, unrestricted access to complete mar-

kets (i.e., unfettered access to the full set of Arrow securities) is constrained inefficient, whereas

judiciously chosen forms of market incompleteness are constrained efficient.

Under imperfect competition, the drawback of complete markets is that they allow in-

vestors to flexibly exploit their price impact in a fully state-contingent manner. Putting constraints

on portfolio formation can mitigate this behavior by linking distortions across states. In particular,

if cross-state linkages create offsetting incentives, regulation can achieve lower average distortions

than complete markets. This benefit must be traded off against the direct cost of market incom-

pleteness, which is that incomplete markets do not permit certain risks to be traded.

This trade-off can be addressed by bundling securities into composite assets that still permit

gains from trade to be realized. These composite assets can be constructed by forming an asset

(or, equivalently, a portfolio strategy) that pays out the net cash flows investors would exchange.

Restricting trade to the composite assets leads to less exploitation of market power than when

investors can trade its constituent securities. This is because distorting trade in the composite asset

simultaneously distorts multiple margins of adjustment, whereas trade in individual securities

allows investors to optimally distort every margin.

To provide a concrete example, imagine two groups of investors facing idiosyncratic risk:

half are rich in state 1 and poor in state 2, and the other half is rich in state 2 and poor in state 1. Ef-

ficiency requires investors to trade offsetting claims on consumption to eliminate all idiosyncratic

risk. Our results show that restricting investors to trade only the swap with payoffs [1,−1] rather

than being allowed to trade the full of set of Arrow securities leads to a Pareto improvement. With

access to Arrow securities, investors disproportionately distort risk sharing in the state where they

are rich because being rich means that marginal utility is relatively flat. Restricting markets to the

swap mitigates market power by creating an offsetting effect: rationing trade in the swap also

affects consumption when the investor is poor. As a result, overall risk sharing improves.

This insight can be applied to prominent regulatory debates. In the aftermath of the Eu-

rozone crisis of 2010, European regulators proposed a ban on “naked” position in credit default

swaps (CDS) on sovereign bonds. Naked trades are positions in CDS that are not associated with a

position in the underlying bond. Instead, regulators forced investors to hold “covered” positions,

which are trading strategies in which an investor holds CDS and the underlying sovereign bond
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in some proportion. Our model is well-suited to analyze the efficacy of these regulations because

they represent a form of asset bundling and because CDS markets are highly concentrated.

We calibrate our model to data from CDS and bond markets using bid-ask spreads to

assess the size of price impact frictions in these markets. We show that the banning of “naked”

CDS positions can be constrained efficient when the required “bundling ratio” of CDS to the bond

is sufficiently aligned with the gains from trade. However, absent direct transfers from clients

to dealers, we estimate that the policy is distributional, with clients benefiting at the expense of

dealers. This aligns closely with dealer complaints about the regulation during this time. We also

show that considering only asset-level indicators of liquidity can be misleading. In our calibration,

overall risk sharing improves even though bid-ask spreads on bonds increase. The reason is that

bid-ask spreads on CDS decrease, and this is enough to offset the decline in bond liquidity. Our

application consequently emphasizes the importance of taking a general equilibrium perspective

regarding portfolio regulation, and to assess liquidity at the level of risk exposures, not securities.

We conclude by offering a broader discussion our findings. First, we consider regulation

that is imposed on a subset of investors rather than market-wide. The main mechanisms remain

robust, but asymmetric regulation also redistributes market power from regulated institutions,

such as banks, pension funds, and insurance companies to unregulated investors, such as asset

managers and hedge funds (e.g., Khetan, Li, Neamtu, and Sen (2023), Pinter and Walker (2023)).

Thus, portfolio regulations are likely to be most effective when they are applied market-wide

and, if restrictions are improperly chosen, they can induce a build-up of inefficient exposure to

diversifiable risk. Second, we discuss two additional settings to which our theory might apply:

capital guarantee products and variable annuities. Both are structured financial products in which

investors obtain aggregate risk exposure bundled with downside risk insurance. Calvet, Celerier,

Sodini, and Vallee (2023) and Koijen and Yogo (2022) show that the pricing and supply of these

products is hampered by market power and illiquidity, suggesting that appropriately designed

restrictions on the precise structure of these bundles may raise trading efficiency in these settings.
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1.1 Related literature

Our paper contributes to a growing literature examines how regulation affects the industrial or-

ganization of financial markets. Egan, Hortacsu, and Matvos (2017) investigates the role of reg-

ulation in promoting financial stability among large banks that hold uninsured deposits, while

Buchak, Matvos, Piskorski, and Seru (2024) studies how changes to capital requirements and

quantitative easing impact competition among traditional and shadow banks. Basak and Pavlova

(2013) shows that financial institutions distort portfolios and asset prices when they take into ac-

count the performance of a benchmark. Hachem and Song (2021) examines liquidity booms in

imperfectly competitive interbank markets. We instead study how the risk management of finan-

cial institutions with market power interacts with the set of risk exposures they can trade.

Our equilibrium concept is Cournot-Walras in the tradition of Gabszewicz and Vial (1972).

The main benefit of this concept is that we can incorporate rich heterogeneity in preferences and

income risk, arbitrary asset spans, asymmetric strategies, and nonlinear price impact, all of which

are important for our analysis. In similar frameworks, Basak (1997) studies a monopolistic in-

vestor who shares risks with price-taking agent in an Arrow-Debreu economy, Rahi and Zigrand

(2009) models the incentives of large traders to arbitrage across segmented markets, Eisenbach

and Phelan (2022) studies fire sales externalities, and Kacperczyk, Nosal, and Sundaresan (2024)

considers asset price informativeness. Different from these studies, we examine how risk sharing

among oligopolistic investors interacts with regulatory constraints on portfolio formation.

A related approach based on Kyle (1989) studies equilibrium-in-demand-schedules. This

allows for richer strategic interactions at the cost of stronger assumptions on preferences and pay-

offs (i.e., symmetry, CARA-normal settings, restricted asset spans) for tractability. In this tradition,

Malamud and Rostek (2017) and Rostek and Yoon (2021) show that introducing redundant assets

or restricting trading partners through decentralization in over-the-counter markets can improve

risk sharing by redistributing price impact across traders. We highlight the complementary result

that restricting the asset span by bundling securities can mitigate incentives to exploit price impact.

Our findings are also related to the literature on financial innovation and market design

(e.g., Demange and Laroque (1995), Pesendorfer (1995)). Athanasoulis and Shiller (2000) shows a

social planner in a CARA-normal setting will first open asset markets most aligned with compet-
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itive agents’ endowments. Previous papers establish that closing markets may be optimal when

financial markets are constrained inefficient, such as with multiple goods (e.g., Cass and Citanna

(1998), Elul (1995)), asymmetric information (e.g., Marin and Rahi (2000)), or heterogeneous be-

liefs (e.g., Blume, Cogley, Easley, Sargent, and Tsyrennikov (2018)). Carvajal, Rostek, and Weretka

(2012) shows how profit maximizing security design by competitive agents may involve leaving

markets incomplete. Babus and Hachem (2023) and Babus and Hachem (2021) considers how

private incentives to design risky securities depend on the competitiveness of the demand side,

while Babus and Parlatore (2021) explores market fragmentation with endogenous liquidity. In

contrast to this literature, we find that unrestricted trading in complete markets increases the scope

for privately optimal but socially inefficient rent extraction.

More broadly, we relate to the literature on endogenous market incompleteness in which

risk sharing is limited by constraints such as limited commitment or borrowing constraints (e.g.,

Alvarez and Jermann (2000), Dávila and Korinek (2018)). In these models, complete markets still

allow the maximum feasible gains from trade to be realized and state prices are always fully

aligned. This is not the case in our model, in which risk sharing distortions are purely strategic.

We show that this allows regulators to foster liquidity through constraints on portfolio formation.

2 Model

We study an endowment economy with a finite number of strategic agents with price impact, a

continuum of price-taking agents (the competitive fringe) who enforce no arbitrage even in the

presence of strategic interaction, and arbitrary market structures (complete and incomplete). In

what follows, bold symbols indicate vectors and {i, j} subscripts on capital letters indicate the ith

row and jth column element of a matrix.

2.1 Agents, endowments, and preferences.

There are two dates, t ∈ {1, 2} and a single numeraire good. Uncertainty is represented by a

discrete set of states of the world Z with cardinality Z = |Z|. State z ∈ Z is realized at date 2 with

probability π (z) ∈ (0, 1).

There are two broad classes of agents: a competitive fringe of mass m f which takes prices as
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given, and a finite number of strategic agents who internalize that their actions affect equilibrium

prices. There are N > 1 types of strategic agents, indexed by i ∈ {1, 2 . . . , N} and 1/µi agents of

type i, each with mass µi, so that the total mass of all strategic agents is N. We assume N ≤ Z so

that there are weakly fewer agent types than states of the world, although this assumption is only

required for Propositions 4 and 5.

Strategic agents may differ in endowments and preferences. An agent of type i receives

state-contingent income µiyi(z) in state z, and an initial endowment of µiwi at date 1. Strategic

agents represent financial institutions with market power in financial markets, which can include

banks, insurance companies, pension funds, broker dealers or large asset managers and hedge

funds. As such, their endowment process can represent the net state-contingent payoffs from loan

portfolios, premiums less payouts to insurees and pensioners, or state-contingent net fund flows.3

The fringe, which represents smaller investors without price impact, receives state-contingent in-

come y f (z) and initial endowment w f . All endowments are bounded.

Remark 1 What is important for our results is that there are gains from trade between investors. While we

model gains from trade as coming from differences in endowments and/or preferences, in practice they may

also reflect induced preferences from other regulations, such as risk-weighted capital requirements, which

create heterogeneous marginal valuations for financial assets.

Size parameter µi determines the market power of an individual agent of type i because it

represents the fraction of the total income and wealth of type i that an individual agent controls.

A larger share of income and wealth translates into higher price impact. We thus also use µi to

measure market concentration, with higher µi reflecting a higher degree of concentration of type

i agents. The competitive equilibrium corresponds to the special case in which µi = 0 for all i. In

what follows, we focus on the case in which all agents within a type follow symmetric strategies.

All agents have homothetic and concave utility functions ui,t (·) over consumption ci,t at

date t. Risk aversion captures the notion that financial institutions can exhibit risk aversion under

a variety of frictions, generating a motive for risk sharing. Beyond this, preferences can be het-

erogeneous. The competitive fringe has linear utility over date 1 consumption, u f ,1
(
c f ,1
)
= c f ,1,

3Since we work in a complete-markets setting with essentially unrestricted income processes, our model can also be
used to capture interest risk through a suitable redefinition of the states of the world.
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and concave utility u f (·) over date 2 consumption (i.e., quasi-linear preferences). Both ui,t (·) and

u f (·) are C2, strictly increasing, and with convex marginal utility. A quasi-linear fringe is analyt-

ically convenient because the pricing functional depends only on the fringe’s marginal utility at

t = 2, but this is not essential.

2.2 Financial markets

Markets are, in principle, complete in that all risks are tradeable in the absence of mandates or

regulation. However, regulatory constraints may effectively restricts the asset span that they can

trade. To capture this, we allow for arbitrary asset spans, and we refer to the asset span generated

by the set of market-wide regulations on portfolio formation as the prevailing market structure.

Consequently, financial markets consist of J ≤ Z securities with bounded payoffs
{

xj (z)
}J

j=1 . A

market structure is indexed by payoff matrix X ∈ RJ×Z, such that x (z) = Xδ (z), where δ (z) is

the Z× 1 vector whose zth entry is 1 and 0 otherwise. Trading takes place at date 1 and assets pay

out at date 2. We distinguish between complete and restricted market structures.

Definition 1 A market structure X is complete if rank(X) = Z and restricted if rank(X) < Z.

Type i’s asset position in security j is ai,j ∈ R, where ai,j < 0 denotes a sale. Given that all

agents within a type follow symmetric strategies, an individual agent of type i holds µiai,j units of

the asset, and the total holdings of all agents of type i is ai,j. The competitive fringe’s asset position

in security j by a f ,j. The market clearing conditions are

N

∑
i=1

ai,j + m f a f ,j = 0 for all j. (1)

Because equilibrium prices depend on asset positions, we denote the market-clearing pric-

ing functional by Pj(A), where A = [a1, a2, . . . aN ] is the matrix of all strategic agents’ asset hold-

ings and ai the J × 1 vector of asset holdings of type i agents. The price impact of an agent of type

i for asset j is the marginal change in the equilibrium price of asset j given a marginal change in

the agent’s asset position, holding fixed other large agents’ positions. We denote the price impact

of the representative large agent of type i by the J × J matrix Λi(A). As the change in aggregate

quantities induced by a change in the portfolio of an individual agent of type i scales with its mass
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µi, so will its price impact. We characterize the properties of equilibrium prices in the next section.

2.3 Equilibrium concept

Our equilibrium concept is Cournot-Walras Equilibrium. In this approach, strategic agents submit

demand schedules taking as given other strategic investors’ demand and internalizing their effect

on equilibrium prices through their influence on the competitive fringe’s portfolio choices.4

At date 1, strategic type i allocates endowment µiwi between immediate consumption and

asset purchases. At date 2, the agent consumes its income and asset payoffs. The decision problem

of the representative strategic investor of type i is:

Ui = max{
c1,i ,{a

j
i}

J
j=1

} ui,1 (c1,i) + ∑
z∈Z

π (z) ui,2 (c2,i (z))

s.t. µic1,i = µiwi − µi ∑
j

Pj(A)ai,j,

µic2,i (z) = µiyi (z) + µi ∑
j

xj(z)ai,j. (2)

We define the controls of strategic agents in this manner while recognizing that the consump-

tion of the representative strategic agent of type i is actually µic1,i and µic2,i (z) at dates 1 and 2,

respectively, and similarly with optimal asset holdings, µiai,j. This is because under homothetic

preferences, optimal policies are invariant to µi.

The competitive fringe differs from strategic agents in that it takes prices as given when

forming its portfolio. Hence its decision problem is:

U f = max{
c f 1,{aj

f }
J
j=1

} c f 1 + ∑
z∈Z

π (z) u f ,2
(
c2, f (z)

)
s.t. c f 1 = w f −∑

j
Pja f ,j,

c2, f (z) = y f (z) + ∑
j

xj(z)a f ,j. (3)

We call the equilibrium with price impact a market equilibrium.

4Neuhann and Sockin (2024) provide a detailed exposition of this approach.
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Definition 2 (Market equilibrium) A market equilibrium is a Cournot-Walras equilibrium consisting

of strategy profiles σi =
(

c1,i, {ai,j(z)}J
j=1

)
for each representative agent of type i and σf =

(
c f 1, {a f ,j(z)}J

j=1

)
for the competitive fringe, pricing functions Pj(A), and associated price impact function Λi(A), such that:

1. Policy σi solves decision problem (2) for each i given σ−i and the set of pricing functions.

2. Each market clears with zero excess demand according to (1).

3. Price impact functions are consistent with pricing functions for all assets.

4. All agents have rational expectations with respect to their equilibrium price impact.

For clarity of exposition we focus on the case in which all strategic agents have the same

size, µi = µ for all i ∈ {1, ..., N}. However, our results remain valid with the appropriate general-

ization to heterogeneous sizes.

2.4 Equilibrium

We now characterize equilibrium in our economy. To characterize the optimal portfolio of strategic

agents, it is useful to define the stochastic discount factor (SDF) for agent i as the marginal rate of

substitution between time 1 and state z:

mi (z) ≡
u′i,2(c2,i(z))

u′i,1(c1,i)
,

where f ′ (·) is the derivative of f (·). To compactly describe key properties of equilibrium, further

let M i be the vector of agent i’s SDFs, ai the J × 1 vector of asset demands, and Π the Z × Z

diagonal matrix of objective probabilities with diagonal entries Πzz = π (z).

We begin by establishing fundamental properties of the market equilibrium.

Proposition 1 In a market equilibrium:

1. Securities prices satisfy the law of one price and are given by Pj(A) = pj(A) where:

pj(A) = ∑
z∈Z

π (z) xj(z)m f (z) and m f (z) = u′f ,2
(
c2, f (z)

)
.
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The fringe’s SDF, m f (z), is decreasing in consumption c2, f (z) and, by market-clearing,

c2, f (z) = y f (z)−∑
j

xj(z)
1

m f

N

∑
i=1

ai,j.

2. The price impact matrix of the representative agent of a given strategic agent type is symmetric across

i ∈ {1, ..., N},

Λ(A) =
µ

m f
XΠΓX′ where Γj,z = −m′f (z) 1{j=z} ≥ 0.

3. The optimal asset portfolio of type i ∈ {1., ..., N} satisfies the first-order necessary condition:

XΠM i = p (A) +
µ

m f
XΠΓX′ai.

If, in addition, the condition in Eq. (A.16) is satisfied, then the agent’s optimal asset portfolio is also

unique. It is sufficient, although not necessary, that the competitive fringe has both constant relative

risk aversion with relative risk aversion coefficient ≤ 1 and an endowment that is sufficiently large

in every state for this to be satisfied.

4. Consumption allocations are invariant to trading alternative sets of securities with the same span.

Proposition 1 shows the first-order condition for portfolio optimality of the competitive fringe

immediately generates a closed-form demand system for all assets. Specifically, prices are equal

to the marginal utility of the fringe evaluated at their equilibrium consumption level. Price impact

is then the marginal change in the fringe’s marginal utility induced by a change in strategic agents’

quantities. By market-clearing, this can be inferred by simply writing the fringe’s consumption

as a function of the strategic agents’ portfolios. This leads to a closed-form expression for price

impact that is linear in the fringe’s marginal utility across states because of the quasi-linearity of

its utility. Because the fringe enforces no arbitrage, consumption allocations are also invariant to

the set of traded securities provided that they have equivalent asset spans.5

Given the pricing system, the optimal portfolio choice of strategic agents equates asset

5Strategic interaction in our model is intermediated by the competitive fringe. Although a strategic agent takes the
asset positions of other strategic agents as given, it does internalize how its own asset demand impacts equilibrium
asset prices by altering the marginal utility of the fringe. Through this channel, how one strategic agent type trades
indirectly affects how another strategic agent type trades by altering the price (and price impact) that agent type faces.
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prices to expected state prices (i.e., probabilities π (z) multiplied by a type i agent’s SDF mi (z))

across all states in which the asset pays a dividend, plus an endogenous distortion from its price

impact that scales with position size. This wedge distorts down the demand of buyers to lower

prices, and the supply of sellers to raise prices. This leads to unrealized gains from trade in the

precise sense that expected state-contingent valuations of marginal changes in consumption are

dispersed across buyers and sellers. Hence, risk sharing is inefficient relative to the first best that

obtains under perfect competition. These wedges exist although there are no exogenous barriers

that would prevent strategic agents from realizing all feasible gains from trade. In the sequel, we

examine these wedges more carefully by putting more structure on the set of tradeable assets.

Notably, there exists a unique market equilibrium for any asset span, which ensures that

regulation has a unique and well-defined implementation in our economy. Existence follows from

standard arguments, while we establish uniqueness by demonstrating the global concavity of

a potential function that aggregates all agents’ utility functions, accounting for Cournot-Walras

equilibrium when taking first-order conditions.6

Proposition 2 There exists an unique market equilibrium.

3 Benchmark Without Portfolio Constraints

In the previous section, we characterized basic properties of equilibria that obtain under any mar-

ket structure. We now provide a characterization of the distortions from market concentration

when there are no exogenous impediments to trade. This is the case when markets are complete

and investors face no portfolio constraints. This setting provides a benchmark to understand how

portfolio regulation may improve trading efficiency in imperfectly competitive financial markets.

3.1 Privately-optimal distortions and externalities

To understand how price impact distorts portfolios in the absence of regulation, we adapt Propo-

sition 1 to the complete market structure with the full set of Arrow securities. (Since equilibrium

6The test of global concavity reduces to examining how a change in a strategic agent’s asset demand impacts its
own utility to second-order, directly by altering its portfolio holdings and indirectly by changing price impact in all
asset markets. The direct effect is globally concave, the indirect effect cancels out because of symmetry in how the price
impact in asset j spills over to j′ and from j′ to j.
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allocations are invariant to the particular set of tradeable assets, our results apply to any complete

market structure.) We then have the following characterization.

Proposition 3 (Optimal portfolios in complete markets) Let X equal the identity matrix, and let p(z)

and ai(z) denote the price and quantities of the Arrow security referencing state z, respectively. Then prices

and price impact for the Arrow security z are given by p (z) = π (z)m f (z) and µ
m f

p′z(A) = Λzz (A) =

− µ
m f

π (z)m′f (z) =
µ

m f
p′ (z) > 0, respectively. The SDF for a strategic agent of type i is:

mi(z) ≡
u′i,2(yi(z) + ai(z))

u′i,1(c1,i)
,

The optimal holdings of Arrow security z satisfies the following first-order condition:

π (z)mi(z) = p(z) +
µ

m f
p′(z)ai(z) for all z.

Sellers of assets (agents with ai(z) < 0) increase their position relative to the optimal portfolio under perfect

competition, while buyers (agents with ai(z) > 0) reduce their position. Hence, marginal valuations are

misaligned between buyers and sellers in every state of the world.

The propositions show that imperfect competition induces agents to implement rent-seeking

distortions at the cost of lost gains from trade. Rather than aligning marginal valuations mi(z) with

the associated Arrow security price p(z) (and thus with all other investors’ marginal valuations),

investors with price impact opt to ration trades in order to extract infra-marginal price conces-

sions. This leads to excess consumption volatility relative to the perfect competition benchmark.

When markets are complete, privately optimal distortions are captured by a state-specific wedge

between private valuations and market prices, namely |π(z)mi(z)− p(z)|.

Given complete markets, these distortions can be chosen in a state-contingent manner.

Investors optimally choose to distort more in states in which price impact is high (leading to high

marginal benefits to quantity distortions) and where changes in traded quantities have relatively

small private costs. Private costs are determined by marginal utility, and thus are low in states in

which marginal utility is relatively flat. This observation implies that one might temper overall

distortions by bundling multiple Arrow securities into composite securities. The reason is that

such bundling reduces the scope for investors to engage in state-specific distortions. Since forced
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bundling of Arrow securities renders markets incomplete, incomplete markets may thus lead to

better risk sharing than complete markets when portfolio choice is distorted by price impact.

There is a further motive for regulatory interventions, which is that privately optimal dis-

tortions impose an illiquidity externality on other investors. This effect is most transparent with a

second-order approximation to the pricing function in Proposition 3,

∆p(z) ≈ p′(z)∑
i

∆ai (z) +
1
2

p′′(z)∑
i

∑
k

∆ai (z) · ∆ak (z) . (4)

The first linear term on the right-hand side of Eq. (4) is the direct price change resulting from a

change in agent demands evaluated at the slope of the pricing function, whereby more demand

raises prices.7 The second-order term for Eq. (4) represents the illiquidity externality that arises

only because our model allows for non-linear price impact, and it reflects strategic interactions

among large investors. If the fringe has convex marginal utility, p′′(z) > 0, a supply reduction

by one seller increases price impact, raising the marginal benefit for another seller to also ration

supply. Conversely, demand reductions lower price impact and induce other buyers to buy more.

We now illustrate these mechanisms using a canonical setting with pure diversifiable risk.

The setting, which we return to throughout the paper, is as follows.

Setting 1 (Purely Diversifiable Risk) There are two types of strategic agents, i ∈ {1, 2}, that have the

same concave utility function, u (·), and the fringe’s date-2 utility function is also u (·). All strategic agents

and the fringe have an initial endowment of ȳ. There are equally-likely states, z ∈ {1, 2}. Strategic agents

are ex-ante symmetric and face pure idiosyncratic risk: yi(i) = ȳ + ∆ and yi(3− i) = ȳ− ∆, i.e., in every

state, one type is income rich and the other type is poor. The fringe receives ȳ in both states.

The distortions to risk sharing which arise in this setting are as follows.

Example 1 (Market power rations trade of diversifiable risk) Consider the environment from Set-

ting 1. By the ex-ante symmetry of strategic agents, in equilibrium each strategic agent sells aS < 0

claims on the state with high private income, and buys aB claims on the state with low private income.

Since the fringe has constant endowment, both securities have the same price p and price impact p′. Hence

strategic agents choose the same consumption at date 1.
7This direct effect is also present in models of strategic trading that feature affine prices, such as those analyzed in

the CARA-normal tradition of Kyle (1989). Because the competitive fringe’s utility function over date-2 consumption
is concave, p′(z) > 0, and an increase in demand / reduction of supply by any strategic agent increases the asset price.
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Perfect risk sharing requires aS = −∆ and aB = ∆. Since price impact induces imperfect risk

sharing, aS = −∆ + δS and aB = ∆− δB for some privately optimal distortions δS and δB for sales and

buys, respectively. The first-order conditions determining these distortions are

Sale distortion:

∣∣∣∣∣ 1
2 u′(ȳ + δS)

u′(ȳ + p · (δS − δB))
− p

∣∣∣∣∣ = µ

m f
p′
(

∆− δS

)
, (5)

Buy distortion:

∣∣∣∣∣ 1
2 u′(ȳ− δB)

u′(ȳ)− p · (δS − δB))
− p

∣∣∣∣∣ = µ

m f
p′
(

∆− δB

)
, (6)

where the left-hand side measures the distortion between private marginal valuations of future consumption

and the asset price. Eqs. 5 and 6 show that these wedges are risk-sharing distortions that stem from price

impact. It is easy to verify that sales are distorted more than buys, δS > δB > 0.8 This is because every agent

sells claims on the state with high income, which means that distortions are less costly because marginal

utility is flatter. As a result, prices and price impact rise, thereby generating the illiquidity externality.

3.2 Aggregate consequences of strategic distortions

In the previous subsection, we show that privately-optimal portfolio distortions because of price

impact can be cast as a set of state-contingent wedges that capture the private marginal benefit

of rationing trades. These make clear that optimal distortions are sensitive to an agent’s state-

contingent income, its trading needs, and its price impact. However, because these wedges are

defined at the individual level over state-contingent income exposures, they provide limited in-

sight into the general equilibrium distortions that they entail. Since policy must reckon with equi-

librium effects, we now develop a method to map state-contingent wedges into market-wide risk-

sharing arrangements to characterize the aggregate consequences of strategic trading.

Specifically, we construct a map between the equilibrium of our model with complete mar-

kets (Proposition 3 ) and an equivalent counterfactual economy with competitive trading but incomplete

markets. Such a mapping exists because market power leads to misaligned marginal valuations

(i.e., state prices), similar to what occurs in competitive models with incomplete markets. The

particular form of the counterfactual asset span (i.e., the markets that appear to be missing) then

provides an interpretable measure of the directions of trade that are distorted by strategic trading.

8If instead δS = δB, then the right-hand side is the same for buyers and sellers. However, the left-hand side is strictly
smaller for sellers than buyers for any given distortion; as such, δS > δB > 0.
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Our approach is similar to Constantinides and Duffie (1996). We first endow all agents

in the counterfactual economy with the consumption allocation they obtain in the market equi-

librium (i.e., c1,i at date 1 and c2,i(z) at date 2). Next, we consider the set of market structures

that generate no further trade away from this allocation if agents behave competitively. Since

such market structures always exist (autarky being one example), we consider the maximum rank

restricted asset span and show it is less than full rank. The formal definition is as follows.

Definition 3 (Counterfactual Economy with Competitive Trading) A counterfactual economy with

competitive trading of rank K consists of a state-contingent endowments process E = {c1,i, {c2,i(z)}N
i=1}

for all agents at all dates and an K× Z asset return matrix X̃, such that:

1. The endowment process is the consumption process from the equilibrium in Proposition 3.

2. Taking the payoff matrix and all prices as given, all agents solve their decision problem (2).

3. No trade is a solution to all agents’ decision problems.

Let M be the N × Z matrix of strategic agents’ stochastic discount factors (i.e., Miz =

mi(z)). Let ιN be the N × 1 vector of ones and superscript T denote the transpose. We then have

Proposition 4.

Proposition 4 There exists a counterfactual economy with competitive trading in which the return matrix

X̃ has maximal rank K less than the number of states Z (i.e., X̃ is rank deficient), where X̃ is the largest

rank matrix whose columns satisfy:

MΠx̃k = ιN for all k,

It is sufficient (although not necessary) that second moment matrix of agents’ state prices (MMT) has

full rank for X̃ to have a nontrivial solution. The extent of implied market incompleteness, as measured by

unrealized gains from trade, satisfies:

Cov (m∗ (z) , mi (z)−mi′ (z)) = 0,

where m∗ (z) (given in Eq. (A.55)) is the projection of the SDF onto the incomplete return space.
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To construct the restricted asset span, we collect all no-arbitrage conditions based on the SDFs of

the N strategic types from the market equilibrium, but now assume they price assets competi-

tively. Given a market structure X̃ of K asset returns by security and state, we use agents’ Euler

equations to solve for each asset payoff vector, x̃k ∈ X̃. This X̃ is the fictitious restricted asset span,

and we look for the largest K for which a solution with linearly independent asset returns exists.9

The second part of Proposition 4 states that the restricted asset span is such that any poten-

tial gains from trade are unpriced by the unique SDF implied by market returns. When markets

are incomplete, one can always recover such a market-implied SDF (e.g., Hansen and Jagannathan

(1991)). Any unrealized gains from trade are consequently interpreted as untradeable under the

hypothesis of perfect competition. Our analysis inverts the insights of Hansen and Jagannathan

(1991) to show one can recover the implied asset span from the cross-section of state prices.10

The restricted asset span provides a taxonomy of risks that can be fully shared under mar-

ket power (i.e., lie within the span) and those not shared enough (i.e., are orthogonal to it). The

former can be traded without distortion, while the latter are strategically rationed to extract price

concessions. This construction is important because it allows us to characterize distortions from

market power directly in terms of the risk exposures they generate, which is the ultimate object of

preferences, rather than quantities traded of particular assets, which can be arbitrary distorted by

the presence of redundant securities. This, in turn, provides insight into the optimal design of

portfolio constraints. In particular, we will show that bundling securities into a composite asset

can mute market power, and that the efficient design of this composite asset should have a pay-

off structure that allows gains from trade to be realized. The counterfactual asset span usefully

summarizes these gains from trade.

Before turning to the optimal design of regulation, we use two canonical special cases of

our model to illustrate the counterfactual asset span. We first return to Setting 1 with homo-

geneous preferences and pure diversifiable risk. We then consider a setting with aggregate risk

and heterogeneous preferences. Appendix B provides the derivations and an interpretation of the

9We do not need to include the competitive fringe in this calculation because we can use the fringe’s state prices
to pin down asset prices once we have recovered the return matrix, X̃. This is because X̃ is a matrix of dividend
yields (dividend x divided by price p), and we are free to specify the two separately such that the fringe’s no arbitrage
conditions hold.

10With more than two states, the dividend-yield matrix X̃ is not unique. Any multiplication of X̃ by an invertible
J × J matrix, O, whose columns sum to 1 would also yield a return matrix that satisfies Proposition 4. This has the
interpretation of rearranging the J assets into J portfolios that represent new assets with an equivalent asset span.
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counterfactual span in terms of the unique market-implied SDF.

Example 2 (The counterfactual asset span with pure diversifiable risk is a risk-free bond) In Set-

ting 1, price impact deters investors from perfectly insuring purely diversifiable risk (see Example 1). As a

result, the counterfactual asset span is a risk-free bond, and the rationed asset that would allow the gains

from trade to be realized is an idiosyncratic risk swap with payoffs [−1, 1].11

Under the maintained hypothesis of perfect competition, the only deterrent to sharing diversi-

fiable risk is that these risks cannot be traded. Hence the counterfactual asset span is a risk-free

bond, which does not permit risk sharing, and the missing asset is a swap that allows risk transfer.

Next we consider a setting with aggregate risk and heterogeneous risk attitudes.

Setting 2 (Heterogeneous Preferences) There are two types of strategic agents, i ∈ {1, 2}, and two

equally-likely states of the world, z ∈ {l, h}. All strategic agents and the competitive fringe have an initial

endowment of ȳ. There is only aggregate risk, yi(h) = yh and yi(l) = yl for all i. Risk attitudes are

heterogeneous: Type 1 is strictly risk-averse and Type 2 is risk-neutral. As a result, it is efficient for the

risk-neutral investor to carry all exposure to aggregate risk. The fringe has the same utility over date 2

consumption as the risk-averse agent.

The counterfactual asset span and the missing asset in this setting are as follows.

Example 3 (The counterfactual asset span with heterogeneous risk aversion is a market index)

While it is efficient for the risk-neutral agent to hold all risk, under price impact the risk-averse agent re-

mains exposed to some risk. Hence, the risk-neutral agent has a constant SDF for all states, m2(z) = mrn >

0, while the risk-averse agent has two distinct state prices satisfying mh < mrn and ml > mrn. The implied

restricted asset span from Proposition 4 has one asset with dividend-yield vector [x̃l , x̃h] satisfying:

1
2

mrn mrn

mh ml


x̃h

x̃l

 =

1

1

 .

11The equivalent restricted asset span can also be characterized using the market-implied SDF m∗ from Proposition
4. Because only a risk-free asset is traded, m∗ is 1

r∗f
in both states. The representative investor consequently owns a

risk-less portfolio. We thank an anonymous referee for this helpful suggestion.
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Solving this equation gives

x̃h =
ml −mrn

1
2 mrn (ml −mh)

and x̃l =
mrn −mh

1
2 mrn (ml −mh)

.

The asset is exposed to aggregate risk since x̃h > x̃l by Jensen’s inequality. Hence it is a levered market

index. This has a natural interpretation: the risk-averse agent can only trade a market index with a degree of

risk exposure that provides no additional insurance. The missing asset is one that would allow for insurance

against aggregate risk. This is an aggregate risk swap with payoffs [mrn −mh, mrn −ml ], i.e. it pays in the

high state and loses money in the bad state.

In both settings, the counterfactual asset span clarifies which risks are poorly shared be-

cause of distortions from price impact. We later return to these settings and show that the missing

assets we derive here are in fact constrained efficient asset spans. As such, they provide direct

guidance into how a regulator should bundle securities to attenuate market power while still fa-

cilitating the realization of gains from trade.

4 Equilibrium consequences of portfolio constraints

Section 3 established that price impact distorts risk sharing, and that complete markets allow in-

vestors to choose state-contingent wedges that maximize their private benefit from price impact.

We now show that imposing portfolio constraints in the form of regulatory restrictions on what

investors can trade hampers their ability to exert market power. Proposition 5 provides a general

characterization of constrained efficient asset spans, and a sufficient condition such that complete

markets are not constrained efficient. Proposition 6 derives the constrained efficient market struc-

ture in our two canonical settings.

For now, we assume that regulator can impose market-wide constraints on the economy.

this we mean that all investors can trade the same set of portfolios. We discuss incomplete regula-

tory coverage in Section 6.1. We capture market-wide restrictions by assuming that the regulator

can choose the asset span X for the economy, and search for constrained efficient asset spans.

Based on the classic compensation principle (Boadway and Bruce (1984)), and in line with stan-

dard definitions of constrained efficiency, such as Geanakoplos, Magill, Quinzii, and Dreze (1990),
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the regulator can also impose a set of budget-balanced transfers at time one.

Assumption 1 (Regulatory tools) The regulator chooses the market structure, as defined by the J × Z

matrix of payoffs X, and a set of budget-balanced date-1 transfers between investors.

Our definition of constrained efficiency is as follows.

Definition 4 An asset span is constrained efficient if a planner cannot implement a Pareto improvement

by altering the asset span and introducing budget-balanced date-1 transfers.

Proposition 5 uses a local perturbation approach to characterize a necessary condition that

a constrained efficient asset span must satisfy.12 In a second step, it then establishes a sufficient

condition for complete markets (i.e., the unrestricted asset span) to be constrained inefficient. In

what follows, ⊗ indicates the Kronecker product and ∇~X J
is the Gateaux derivative with respect

to the ZJ× 1 asset span payoff vector ~X J , and 0ZJ is the ZJ× 1 of zeroes. Recall that M i represents

the stochastic discount factor for agent i, that the stochastic discount factor for the competitive

fringe, M f , is aligned with market prices, and that Π is the vector of physical probabilities.

Proposition 5 A constrained efficient asset span satisfies the necessary condition:

N

∑
i=1

Π
(

M i −M f
)
⊗ ai︸ ︷︷ ︸

Change in Risk Sharing Efficiency

+
µ

m f
∇~X J

aiXΓXTai︸ ︷︷ ︸
Change in Price Impact Rents

= 0ZJ , (7)

If N < Z, then complete markets (i.e., no restrictions) is constrained inefficient.

Eq. (7) decomposes the effects of changes in the asset span into two channels. The first

channel operates by directly altering which risks are traded: changes in the asset span affect trad-

ing efficiency by determining which consumption profiles cannot be traded. The decomposition

shows that unrealized gains from trade can be measured by expected quantity-weighted differ-

ences in stochastic discount factors. The second channel operates by modulating the distortion

from price impact. Since investors have state-contingent motives for exploiting market power,

12As is well- appreciated (e.g., Cass and Citanna (1998)), local arguments are invalid when the number of assets
changes. We therefore consider perturbations of the asset span for a fixed number of assets, J, with candidate asset
spans evaluated for each choice of J ∈ {1, ...Z}. If N < Z, we can use this condition to compare complete markets
to restricted asset spans because we can replicate the complete markets allocation with a restricted asset span of N
bespoke assets. The proof provides details.
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varying the asset span mitigates or amplifies these distortions. This is reflected in price impact

terms. Constrained efficient asset spans optimally trade off these two channels.

The second part of Proposition 5 establishes a sufficient condition for the constrained in-

efficiency of complete markets. Whereas Section 3.1 showed that complete markets allow for

privately optimal state-contingent exploitation of market power, thereby distorting risk sharing,

we now show that imposing market incompleteness can dampen distortions from market power.

This contrasts with the canonical theory of the second best with competitive rational agents (e.g.,

Geanakoplos and Polemarchakis (1986)) in which fully completing markets achieves the first best.

Here, certain forms of market incompleteness reduce distortions relative to complete markets.

To characterize constrained efficient market structures in more detail, we must place fur-

ther restrictions on endowments and preferences. Hence we return to our two canonical settings.13

For these settings, Proposition 6 shows that a swap, which is the “rationed asset” from Section 3,

generates Pareto improvements relative to complete markets by improving risk sharing. Moreover,

the Pareto improvement can be achieved without initial transfers.

Proposition 6 (Pareto-improving market incompleteness in canonical settings) The optimal asset

span in our two canonical settings can be described as follows:

(i) [Setting 1] If u′ (ȳ) ≥ 1, then restricting trade to a swap that pays [1,−1] achieves a Pareto improve-

ment over no restrictions.

(ii) [Setting 2] Consider the limit of the economy in which m f → 0, holding µ/m f fixed, and one type of

strategic agent is strictly less risk averse than the other. Then, there exists a swap with payoffs [−1, xl ]

and xl > 0, such that restricting agents to trade it achieves a Pareto improvement over no restrictions.

The intuition for the first setting is as follows. With ex-ante symmetric agents, trading a

swap is sufficient to realize all gains from trade. With Arrow securities, because agents are ex-post

heterogeneous, they ration sales more than purchases since sales occur when the agent is rich and

marginal utility is relatively flat. By bundling states, the swap lowers the incentives to distort sales,

which improves risk sharing and liquidity. As a result, all agents have strictly higher utility when

13To isolate the asymmetric incentives of strategic agents to distort in the aggregate risk example, we assume that one
strategic agent type is less-averse than the other (rather than risk-neutral), in the sense that the other’s utility function
is a concave transformation of its own at both dates. In addition, we focus on the limit in which the competitive fringe
become arbitrarily small, but price impact remains well-defined in the limit. See the proof for further details.
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the swap is the only available asset. Setting 2 with aggregate risk follows similar logic. Although

the less risk-averse agent can exert more market power in all states, it does so particularly when

the risk-averse agent is desperate for additional consumption (i.e., the low state). By fixing the

terms of trade across high and low states, the restricted asset span leads to weaker distortions to

asset positions. As a result, the more risk-averse agent is strictly better off when trading the swap,

while the less risk-averse agent is indifferent (i.e., no worse off) because the loss in inframarginal

trading rents is offset by the increase in volume.

5 Application: regulation of credit default swaps

In this section, we use our framework to shed light on a prominent regulatory debate regard-

ing credit default swaps for sovereign bonds. The basic question is whether market participants

should be allowed to buy CDS contracts only if they have sufficient exposure to the underlying

asset (a so-called “covered” position), or if they should be allowed to buy CDS contracts without

any underlying exposure (a “naked” position). Germany temporarily banned “naked” CDS posi-

tions on Eurozone sovereign debt in May 2010, while the European Union permanently banned

them in November 2011. Advocates of the ban argue that naked positions encourage speculation,

while critics counter that bans harm liquidity in underlying bond markets. For instance, Oehmke

and Zawadowski (2015) shows that the introduction of CDS contracts lowers yields but can raise

borrowing costs for traders. Our model can inform this debate because it can account for cross-

asset spillovers under flexible portfolio constraints. Moreover, consistent with our model, CDS

markets are known to be concentrated: a small number of dealers account for a large majority of

CDS volume, and high observed bid-ask spreads are indicative of limited liquidity (see the evi-

dence in D’Errico, Battiston, Peltonen, and Scheicher (2018) and Chaumont, Gordon, Sultanum,

and Tobin (2023)). Our approach is to measure price impact from bid-ask spreads and use our

model to assess different regulatory treatments of CDS contracts.

We consider the following special case of our model. There are two states, z ∈ {1, 2}, two

types of strategic agents and a competitive fringe, all with log utility. The aggregate endowment

is Y at date 0 and in state 1, but it is δY ≤ Y in state 2. Clients receive a share α0 of the aggregate

endowment at date 0, and a share α1(z) in state z at date 1. We call the first strategic type clients,
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and the second type dealers. This is because dealers end up selling bonds and CDS to clients.14

We then study two market structures. In the first (complete markets), there is a risky bond

and a CDS contract. The bond has face value B but pays zero upon a default. Default occurs in

state 2, the state with the low aggregate endowment. The CDS contract pays 0 in state 1 and B

in state 2. Hence, the CDS can be used to insure against default, and the combination of both

assets leads to complete markets. In the second structure (regulated markets), agents can trade only

a single security: a covered bond which pays B in state 1 and ρB in state 2. This structure can be

achieved by requiring market participants to hold the bond and CDS in fixed proportion, as in

a requirement to trade only covered positions. Because B is a normalization, the key parameter

determining this market structure is ρ.

An important obstacle to taking our model to the data is that the cross-section of endow-

ments and trading positions is not readily observable to the econometrician, even if it may be

(partially) observable to traders and regulators. To overcome this issue, we set endowments by

assuming the regulated market structure is well-calibrated to the prevailing gains from trade. In

particular, we assume that under perfect competition, the covered bond is sufficient to realize all

gains from trade. This obtains if clients would like to buy 1 unit of the risky bond and ρ units of

the CDS contract from the dealers. Given this assumption, ρB then determines the cross-state dis-

persion of endowments. The endowment process of the fringe is set such that it takes zero asset

positions in the competitive equilibrium benchmark. Appendix C considers the case where the

covered bond is not sufficient to realize all gains from trade, so that the policy is poorly calibrated

to the underlying fundamentals.

We calibrate key parameters of our model by matching model moments generated under

complete markets to data from global bond and CDS markets. We target the mean sovereign

bond mid-price yield, mean sovereign bond bid-ask spread, and the mean sovereign CDS bid-ask

spread across 65 sovereigns from 2004 to 2012 reported in Table 1 of Sambalaibat (2023). We also

target a CDS-bond basis of −1% for speculative-grade countries from Figure 7 of Gilchrist, Wei,

Yue, and Zakrajšek (2022).15 Our calibration should be therefore be understood as capturing broad

14To avoid having to calibrate an endowment process for the competitive fringe, we study the limit of our economy
as the fringe becomes arbitrarily small, m f → 0, but the relative size of strategic agents remains constant in the limit,

µ
m f

= κ. Neuhann and Sockin (2024) formally study this limit.
15That is, we calibrate the model assuming the data were generated in a time period when “naked” CDS were avail-
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empirical patterns across a range of countries.

Data Moment Value Parameter Calibrated Value
Aggregate steady state endowment – Y 2
Face value of bond – B 0.05
Bond yield (%) 5.08% Default prob. π 0.048
Bid-ask spread for bonds (% of par) 1.00% Relative size µ

m f
0.133

Bid-ask spread for CDS (% of mid-price) 13.47% Agg. shock δ 0.994
CDS-bond basis (%) −1.00% Dispersion ρB 0.6917

Table 1: Calibration targets and associated parameters. Y and B fix the scale of the economy and thus have
no direct counterparts in the data. All market participants have log utility.

Table 1 provides the target moments and associated parameters. The key parameters are

the shock to the aggregate endowment δ, the probability of default π, the relative size of strategic

agents µ/m f , and income dispersion ρ. While all parameters interact non-linearly, identification

broadly works as follows. The bond yield is directly influenced by the default probability π.

Relative size µ/m f directly affects the price impact friction in investors’ optimality conditions,

and we can therefore discipline its level using the bid-ask spreads. The bid-ask spread for bonds

depends on marginal valuations in both states of the world, whereas the CDS bid-ask spread

depends on marginal valuations in state 2 only. Hence aggregate shock δ separately modulates the

CDS bid-ask spread. The CDS-bond basis measures differential expected returns across bonds and

CDS. Because these reflect marginal utilities, the basis pins down the dispersion in endowments.

Table 2 reports model outcomes for our calibrated parameters from the complete-markets

benchmark. The implied initial wealth distribution is wclient = 1.0812 and wdealer = 0.918. The

implied endowment process is yclient = [0.3024, 0.95] and ydealer = [1.684, 1.05]. Because we have as

many parameters as targeted moments, we can fit the targeted moments exactly. The main object

of interest is the counterfactual equilibrium given the regulation, which is reported in the third

column. Banning naked “CDS” positions lowers bond yields by 67 basis points because investors

buy more bonds to maintain a covered CDS position. This higher demand for bonds increases the

bid-ask spread (as % of par) by 32.0%. In contrast, the lower demand for CDS positions reduces

the CDS bid-ask spread (as % of mid-price) by 38.5% and the CDS-bond basis (in absolute value)

by 44%. Consequently, sovereign borrowing costs fall and CDS markets become more liquid.

able to trade. Since the EU ban applied only in some countries and only in the last year of the sample, this assumption
appears reasonable. Appendix C describes how we map our model into these empirical moments in more detail.
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Absent transfers, regulation benefit clients at the expense of dealers. We establish this

result using two complementary measures. First, we measure changes in investor-level expected

utility using the equivalent variation. That is, we compute the investor-specific change in initial

wealth which ensures that the investor is equally well off in complete markets (given the adjusted

wealth level) and in the regulated economy, holding fixed the level of prices and price impact

in the complete-markets equilibrium. For clients, the equivalent variation is 0.47 bps of initial

wealth. For dealers, the equivalent variation is −0.33 bps of initial wealth. Second, we explicitly

recompute equilibrium prices and allocations given a hypothetical wealth transfer from clients to

dealers. In practice, such transfers could be implemented by clients paying dealers a fixed fee to

trade. We find that wealth transfers of 0.3-0.46 basis points of initial client wealth would render

the regulation a Pareto improvement. The distributional effect obtains because the regulation

attenuates sellers’ market power in bonds and CDS, and clients are buyers of both assets. Hence it

is consistent with dealers’ protesting of the E.U. regulation that ultimately led to their exemption.16

Data Moment Complete markets Covered Bond only
Bond yield (%) 5.08 5.05
Bid-ask spread for bonds (% of par) 1.00 1.32
Bid-ask spread for CDS (% of mid-price) 13.47 8.29
CDS-bond basis (%) -1.00 -0.56
Client equivalent variation relative to initial wealth (bps) – 0.47
Dealer equivalent variation relative to initial wealth (bps) – -0.33
Wealth transfer for Pareto improvement (bps) – 0.3–0.46

Table 2: Outcomes for complete markets benchmark and regulated markets with covered bond only. The equivalent
variation is computed as a wealth change in the complete markets economy, holding prices and price impacts fixed.
The wealth transfer required for a Pareto improvement is a date-1 transfer from clients to dealers, and it is measured
by recomputing all equilibrium outcomes given the transfer. It is reported relative to initial client wealth.

More generally, the fact that wealth transfers can induce a Pareto improvement indicates

that the regulation improves trading efficiency. Interestingly, this is the case even though impor-

tant asset-level measures of liquidity, such as the bond bid-ask spread, deteriorate. The reason is

that the decline in bond liquidity is more than offset by an increase in CDS liquidity. This high-

lights the importance of cross-asset spillovers for policy evaluation, and suggests that changes in

bid-ask spreads are insufficient for gauging the impact of banning “naked” CDS positions.

16See, for instance, “Dealers and Issuers Protest European Ban on Naked CDS”.
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6 Broader implications

In this section, we briefly discuss some broader implications of our analysis. First, we study

asymmetric regulatory coverage in which regulation may apply only to some investors. Second,

we discuss two additional markets where our findings are relevant.

6.1 Portfolio constraints on specific institutions

Until now, we assumed regulatory portfolio constraints were imposed on all market participants.

However, in practice certain regulations apply only to a subset of financial institutions, either by

design or because of limited enforcement. We now consider how imperfect regulatory coverage

affects our results. We model asymmetric portfolio constraints by assuming markets are composed

of Arrow securities and some agents face constraints on the combinations of securities they can

trade. For example, a portfolio constraint might require agent i to take position ai(z) = ψ(z)ai(z∗)

in Arrow security z if she holds a position ai(z∗) in Arrow security z∗, where ψ(z) is a parameter.

Since our aim is to understand how partial coverage alters our insights on the effective-

ness of portfolio regulation, we return to our two canonical settings. In Setting 1, mandates still

improve equilibrium outcomes even if coverage is imperfect.

Example 4 (Mandates with imperfect coverage also reduce price impact) Consider Setting 1 in which

two types ex-ante symmetric agents share diversifiable risk. We impose portfolio constraints on a subset of

large agents by assuming a fraction χ of each type is restricted to take a position in asset 2 that is the nega-

tive of its position in asset 1, i.e. a(2) = −a(1). This is equivalent to forcing these agents to trade only the

swap with payoffs [1,−1], which we identified as the optimal asset span in this setting.

Perfect risk sharing using the swap requires a(1) = ∆ for a portfolio-constrained agent of type

2 and a(1) = −∆ for a constrained agents of type 1. Let δPR denote the absolute deviation from perfect

risk sharing for an agent with trading restrictions (that is, a(1) = ∆ − δPR if the agent is type 2 and

a(1) = −∆ + δTR if the agent is of type 1). Because prices of the underlying securities remain symmetric,

the net cost of the swap is zero and constrained investor have zero net expenditures on financial assets. The
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optimality condition determining distortion δPR is

1
2

∣∣∣∣∣ 1
2 u′(ȳ + δPR)

u′(ȳ)
− p

∣∣∣∣∣+ 1
2

∣∣∣∣∣ 1
2 u′(ȳ− δPR)

u′(ȳ)
− p

∣∣∣∣∣ = µ

m f
p′
(

∆− δPR
)

.

Comparing with the analogous conditions for unconstrained investors (see Example 1), constrained investor

have initial consumption ȳ rather than ȳ− p∗(δS− δB). Since δS > δB, constrained investors face a higher

cost of distorting portfolios at date 2, and therefore distort less. Given that constrained agents have exactly

offsetting demand for both Arrow securities, fringe consumption is c2, f = ȳ − 1−χ
m f

(δS − δB). Since c f

is strictly increasing in the constrained share χ, price impact is strictly decreasing. As such, portfolio

constraints with partial coverage improve liquidity.

We next consider Setting 2 with heterogeneous preferences and pure aggregate risk. Here,

asymmetric mandates can have differential effects on the liquidity of different securities because

asymmetric mandates reallocate market power across financial institutions. Specifically, liquidity

improves in markets where unconstrained institutions are buyers, and deteriorates in markets

where they are sellers, and this induces reallocation in surplus across institutions as well.17

Example 5 (Asymmetric mandates can redistribute market power and liquidity) Consider Setting

2. Further assume that the fringe has wealth 1 in every state, and strategic agents’ initial wealth is

ȳ = yh+yl
2 . Under perfect competition, the risk-averse agents obtains full insurance by buying 1

2 (yl − yh)

units of a swap with payoffs [1,−1] (or by buying the underlying Arrow positions directly). By market

clearing, the risk-neutral agent takes the offsetting position.

Now suppose that the risk-neutral type is restricted to trade only the swap. Let δrn denote the

absolute deviation from perfect risk sharing for the risk-neutral agent with portfolio restrictions, i.e., arn =

1
2 (yl − yh) + δrn. The first-order condition pinning down this distortion is

p(h)− p(l) =
µ

m f

(
p′(l) + p′(h)

) 1
2
(yl − yh) +

µ

m f

(
p′(l) + p′(h)

)
δrn.

where by no arbitrage the swap price is p(l)− p(h) and price impact is µ
m f

(p′(h) + p′(l)). Next, consider

17This insight extends beyond asymmetric mandates to other restrictions on strategic agents’ portfolios, such as
position limits and risk management constraints. Because position limits and risk management constraints mainly
affect buyers rather than sellers of assets, they are less likely to be as effective as market-wide regulation on what
agents can trade.
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how much the unconstrained investor distorts her portfolio, and let δra
z denote the state-z distortion from

perfect risk sharing. Taking differences of the optimality conditions for the individual securities yields the

implied distortion to the swap, which usefully summarizes net distortions:

1
2 u′
(
ȳ− δra

l

)
− 1

2 u′
(
ȳ + δra

h

)
u′
(
ȳ + 1

2 (p(l)− p(h)) (yh − yl) + p(l)δra
l − p(h)δra

h

) =
µ

m f
∑ p′(z)(δra

z − δrn)

Portfolio constraints prevent the risk-neutral agent from fully exerting its market power. As such, the

unconstrained risk-averse agent can more aggressively raise the price of the high-state claim and lower

the price of the low-state claim. The asymmetric mandate thus redistributes market power and welfare

to unconstrained investors. In practice, mandates on regulated financial institutions, such as banks and

insurance companies, may reallocate pricing power to those with fewer constraints, such as hedge funds.

6.2 Implications for other markets and products

So far, we have provided a general theoretical analysis of portfolio restrictions in financial markets,

and applied our theory to a prominent regulatory debate surrounding credit default swaps. We

now briefly discuss other settings where our analysis can provide new insights for regulation.

6.2.1 Capital guarantee products

Calvet, Celerier, Sodini, and Vallee (2023) document the rapid adoption of “capital guarantee”

products among Swedish households. These are structured products that offer substantial expo-

sure to aggregate risk, capturing about half of the equity premium, but also provide protection

against downside risk. As such, they can be understood as a bundle of a market index and an

aggregate risk swap of the type that we characterize in Example 3. Calvet, Celerier, Sodini, and

Vallee (2023) document substantial markups of around 1.5% of invested capital per year in this

market. The rapid adoption of this product suggests that there are gains from trade in aggregate

risk, and the markups indicate that the bundle currently offered allows insurance companies to

extract significant rents. Our model suggests that appropriate constraints on the design of capital

guarantee products can attenuate market power. Moreover, our characterization of the rationed

asset span in Example 2 indicates that the optimal security design should be sensitive to marginal

valuations, which depend on household preferences, among other factors.
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6.2.2 Variable annuities

Koijen and Yogo (2022) discuss the supply of variable annuity products in the U.S. life insurance

industry. These are structured products that bundle mutual funds with minimum return guaran-

tees over long horizons. They proved popular, accounting for 35% of U.S. life insurer liabilities

in 2015, but also fragile, with insurers reducing supply of variable annuities during periods of

financial stress. Consistent with the key friction underpinning our theory, Koijen and Yogo (2022)

emphasizes that the supply and demand for variable annuities is driven by both the low liquidity

of long-term options markets that would otherwise allow insurance companies to hedge aggregate

risk, and by market power in the provision of these products. Changing financial product design

appears to be a partial solution to this problem, with insurers now selling “short put” products

to clients willing to bear aggregate risk (Barbu and Sen (2024)). Our framework provides tools to

assess how regulating products for aggregate risk transfer impacts liquidity and trading efficiency.

7 Conclusion

We develop a framework to characterize how portfolio restrictions on financial institutions with

market power affect their risk management. Our analysis delivers two key insights. First, since

privately-optimal portfolio distortions from market power are highly state-contingent, risk shar-

ing is most impaired when investors face few restrictions on portfolio formation and when gains

from trade are large. Second, market-wide constraints on portfolio formation can improve risk

sharing by attenuating rent-seeking behavior. As such, relaxing portfolio constraints on financial

institutions with market power can induce inefficient exposures to diversifiable risk. Applying

our model to the banning of “naked” sovereign CDS positions, we find that the policy improves

risk sharing even though it increases bid-ask spreads in bond markets. This highlights the impor-

tance of accounting for cross-asset spillovers in general equilibrium when evaluating policy.
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A Proofs of Propositions

In what follows, we use the following objects. Let Ik be the k × k identity matrix, ιk be the k × 1

vector of ones, ej the j× 1 Euclidian vector whose jth entry is 1, and all other entries are zero. In

addition, let xj be the jth 1× Z row vector of the payoff matrix, X.

A.1 Proof of Proposition 1

Step 1: The Problem of the Competitive Fringe.

From the first-order condition for the optimal holdings of asset j, a f ,j, from the competitive fringe’s

problem (3), we can recover the pricing equation:

pj = ∑
z∈Z

xj (z)π (z) u′f ,2
(
c2, f (z)

)
= ∑

z∈Z
π (z) xj (z)m f (z) , (A.1)

where M f (z) = u′f ,2

(
c f (z)

)
is the SDF of the competitive fringe in state z. Because the fringe’s

consumption in state z satisfies Eq. (3) and a f ,j satisfies market clearing in Eq. (1), it is immediate

from (A.1) that price impact satisfies the matrix:

Λi (A) =
µ

m f
XΠΓX′ where Γj,z = −m′f (z) 1{j=z} ≥ 0, (A.2)

which is the same for all strategic agents (i.e., price impact is anonymous). We define the equilib-

rium price function to be pj (A) = Pj (A).

Substituting the market-clearing condition in Eq. (1) into the fringe’s consumption at date

2 from (3), c f (z) can be expressed as:

c2, f (z) = y f (z) + ∑
j

xj(z)

(
− 1

m f

N

∑
i=1

ai,j

)
.

Step 2: The Law of One Price.

The law of one price holds because the competitive fringe prices all assets. To see this, suppose

there are two assets, j and k, with payoffs xj (z) and xk (z). Then:

pj (A) = ∑
z∈Z

π (z) xj (z)m f (z) = ∑
z∈Z

π (z) xk (z)m f (z) = pk (A) .
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Since the competitive fringe participates in all asset markets, no arbitrage is satisfied in our setting.

Step 3: The Problem of Strategic Agents.

To economize on notation, we consider a representative agent of type i. Let ϕi be the Lagrange

multiplier on strategic agent i’s budget constraint. The first-order condition for optimal initial

consumption c1,i from strategic agent i’s problem (2) is:

u′i,1 (c1,i)− ϕi = 0. (A.3)

The first-order condition for optimal asset holdings of asset j, ai,j, is:

∑
z∈Z

π (z) x (z) u′i,2 (c2,i (z))− ϕi
(

Pj (A) + Λi,j (A) ai
)
= 0, (A.4)

where Λi,j (A) is the jth row of Λi (A) and ai is the vector of agent i’s asset demands. We can

rewrite (A.4) with strategic agent i’s state price Mi (z), substituting for ϕi with (A.3):

∑
z∈Z

π (z)mi (z) x (z)− Pj (A)−Λi,j (A) ai = 0. (A.5)

We next recognize that strategic agent i has rational expectations, and its perceived price

impact must be its actual price impact. It then follows that Λi (A) = XΓX′.

Let M i be the vector agent i’s SDFs and Γ the diagonal matrix with entries Γj,z = −m′f (z) 1{j=z} ≥

0. Since this price impact function is pinned down by the fringe from (A.2), and the equilibrium

price function is pj (A), (A.5) becomes:

p (A) = XΠM i −
µ

m f
XΠΓX′ai, (A.6)

because a strategic agent of type i has mass µ.

Since the budget constraint of strategic agent i will hold with equality in equilibrium by

efficiency, the optimal asset holdings ai,j determine both date 1 and date 2 consumption, c1,i and

c2,i (z), respectively.

We now recognize that no strategic agent would ever take an infinite position in any asset.
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To see this, notice that optimal asset holdings satisfy the FONC (A.6), which we rewrite as:

XΠM i = p (A) +
µ

m f
XΠΓX′ai. (A.7)

Because all endowments at all dates are bounded, the asset positions, and consequently

consumption at each date, of all agents are also bounded. Consequently, we can bound all controls

of strategic agent i’s problem, {c1,i, {ai,j}J
j=1}, in a closed and bounded set. By the Heine-Borel

Theorem, this set is compact.

Because the state prices of the strategic agents and the price impact functional are con-

tinuous, because all utility functions are C2, strategic agent i’s choice correspondence set is also

continuous in the optimization problem’s primitives (i.e., endowment processes, asset positions

of other agents, and initial wealth). Consequently, the choice correspondence of strategic agent i’s

problem is continuous and compact-valued.

It then follows because the objective function of strategic agent i is continuous (in fact,

differentiable), and the choice correspondence is continuous and compact-valued, that by Berges’

Theory of the Maximum a solution to the decision problem of strategic agent i exists and the opti-

mal policy correspondence is upper-hemicontinuous and compact-valued. As the choice of i was

arbitrary, this holds for all agents of type i and all types i ∈ {1, ..., N}.

Step 4: Uniqueness of Strategic Agent’s Optimal Portfolios.

Case 1: Complete Markets: We begin with the complete markets case. In this case, the price of Arrow

security z is p (z) = −Λ f (z). For notational convenience, we designate the price impact in asset z

as p′ (z) = −Λ′f (z) and the derivative of price impact as p′′ (z) = −Λ′′f (z).

Taking the second-order condition for the optimal asset position ai (z), and dividing by

u′ (c1,i) > 0 and substituting with Eq. A.6, we have that:

∂2Ui

∂ai (z)
2 ∝

u′′ (c2,i (z))
u′ (c1,i)

− u′′ (c1,i)

u′ (c1,i)
p (z) Mj,i (z)−

µ

m f
p′ (z)

(
2 +

p′′ (z)
p′ (z)

ai (z)
)

, (A.8)
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which we can rewrite as:

∂2Uj,i

∂ai (z)
2 ∝ π (z)

∂mi (z)
∂ai (z)

− µ

m f
p′ (z)

(
2 + θ (z)

ai (z)
c2, f (z)

)
, (A.9)

where p′′(z)c2, f (z)
p′(z) = − u′′′(c2, f (z))c2, f (z)

u′′(c2, f (z))
= θ (z) is the fringe’s coefficient of relative prudence. Notice

that ∂mj,i(z)
∂ai(z)

≤ 0 because buying more of the asset referencing state z lowers strategic agent j of type

i’s marginal valuation of consumption in that state. Because the competitive fringe has convex

marginal utility, θ (z) ≥ 0.

It then follows because θ (z) ≥ 0 that for ai (z) ≥ 0, ∂2Ui
∂ai(z)

2 < 0 based on condition A.14.

Consequently, we need only focus on the case in which ai (z) < 0.

Let c̃ f (z) be the residual consumption of the fringe in state z without agents of type i’s

supply. When ai (z) < 0, we can rewrite condition (A.14) as::

∂2Ui

∂ai (z)
2 ∝ π (z)

∂mi (z)
∂ai (z)

− µ

m f
p′ (z)

(
2− θ (z)

|ai (z) |
c̃ f (z) + |ai (z) |

)
, (A.10)

where we recognize that all agents j of type i behave identically.

Suppose y f (z) is sufficiently large that c̃ f (z) ≥ 0. Then |ai(z)|
c̃ f (z)+|ai(z)| ≤ 1, and it is sufficient

that θ (z) ≤ 2 for ∂2Ui
∂ai(z)

2 < 0. This is true if the fringe has constant relative risk aversion preferences

with CRRA coefficient less than or equal to 1.

Further, notice that with Arrow-Debreu securities:

∂2Ui

∂ai (z) ∂ai (z′)
∝ π (z)

∂mi (z)
∂ai (z′)

< 0. (A.11)

Recall that Mi is the Z × 1 vector of the SDFs of strategic agent i and ai the Z × 1 vector

of asset positions. We can then express the Hessian as being proportional to ∇ai mi − D, where D

is a diagonal matrix. That ∇ai mi is negative definite is standard for portfolio choice models with

concave utility. It is also sufficient that y (z) is sufficiently large and the fringe has constant relative

risk aversion preferences with CRRA coefficient less than or equal to 1 for D to be a diagonal

negative definite matrix because all diagonal elements are then negative.

Because the sum of negative definite matrices is also negative definite, it follows that the
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Hessian is negative definite. As such, in this case the first-order conditions for the optimal asset

positions of strategic agent j of type i are also sufficient.

Case 2: Incomplete Markets: The argument for the incomplete markets case is similar to the

complete markets case. Let G be the Z2 × 1 vectorization of the matrix, ΠΓ.

For the fourth part of the lemma, taking the second-order condition for the optimal asset

position vector ai, and dividing by u′ (c1,i) > 0 and substituting with Eq. A.6, we have that the

Hessian of the agent’s unconstrained optimization problem isHi
1

Hi = XΠϑiX′ − u′′ (c1,i) XΠM i p′ (A)− u′ (c1,i)
µ

m f

(
2XΠΓX′ +

(
a′iX⊗ X

)
∂ai G

)
, (A.12)

where ⊗ is the Kronecker product and ϑi is the Z × Z diagonal matrix with diagonal entries

u′′ (c2,i (z)).

Let H be the Z × Z gradient matrix of the vector Mi with respect to ai and Γ̂ the diago-

nal matrix with diagonal entries −u′′′
(
c2, f (z)

)
> 0. With some manipulation, and dividing by

u′ (c1,i) > 0, we can rewrite Eq. A.12 as:

Hi ∝ XΠHX′ − µ

m f

(
2XΠΓX′ + XΠΓ̂

((
X′aiι

′
J
)
� X′

))
, (A.13)

where� is the Hadamard product. By the properties of the Hadamard product, Eq. (A.13) reduces

to:

Hi ∝ XΠ
(

H − µ

m f

(
2Γ + Γ̂Diag

(
X′ai

)))
X′, (A.14)

where Diag is the diagonal operator.

Notice that for any vector J × 1 vector x that:

b′XΠ
(

H − µ

m f

(
2Γ + Γ̂Diag

(
X′ai

)))
X′b = y′Π

(
H − µ

m f

(
2Γ + Γ̂Diag

(
X′ai

)))
y, (A.15)

for y = X′b.

1Note that:
XΠΓX′ai =

(
a′iX⊗ X

)
G.
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Consequently, if:

y′Π
(

H − µ

m f

(
2Γ + Γ̂Diag

(
X′ai

)))
y < 0 ∀ ai, (A.16)

then the second-order condition for strategic agent i’s optimization program is satisfied, and its

optimal policies are unique.

Because H is negative definite for concave utilities ui,1 (·) and ui,2 (·), XΠHX′ is negative

definite. Because the sum of symmetric negative definite and negative (semi)-definite matrices is

negative definite, if 2Γ+ Γ̂Diag (X′ai) is positive semi-definite, then XΠHX′− µ
m f

XΠ
(
2Γ + Γ̂Diag (X′ai)

)
X′

is negative definite.2

We can rewrite 2Γ + Γ̂Diag (X′ai) as:

2Γ + Γ̂Diag
(
X′ai

)
= Γ

(
2IZ + ΘDiag

(
c f
)−1 Diag

(
X′ai

))
, (A.17)

where IZ is the Z× Z identity matrix, Θ is the diagonal Z× Z matrix of the competitive fringe’s

coefficient of relative prudence in each state, θ (z), and c f is the vector of the competitive fringe’s

consumption in each state. Because the competitive fringe has convex marginal utility, θ (z) ≥ 0.

Thus, it is sufficient that the diagonal matrix 2IZ + ΘDiag
(
c f
)−1 Diag (X′ai) has all non-

negative entries for it to be positive semi-definite. Suppose the minimal element is achieved in

state z̃, and let x:z̃ be the z̃th column of X.

Notice that x′:z̃ai is the total transfer to strategic agents of type i of state z̃ consumption, and

let c̃ f (z) be the residual consumption of the fringe in state z without agents of type i’s transfer. We

consequently require that:

2 + θ (z̃)
x′:z̃ai

c̃ f (z)− x′:z̃ai
≥ 0, (A.18)

similar to the complete markets case, since θ (z) is nonnegative because the fringe has convex

marginal utility, we need only focus on the case in which x′:z̃ai is negative. In this case, Eq. (A.19)

becomes:

2− θ (z̃)
|x′:z̃ai|

c̃ f (z) + |x′:z̃ai|
≥ 0, (A.19)

2Notice further by Eq. A.15 that Γ is positive definite.
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Suppose y f (z) is sufficiently large that c̃ f (z) ≥ 0. Then |x′:z̃ai |
c̃ f (z)+|x′:z̃ai | ≤ 1, and it is sufficient that

θ (z) ≤ 2 for ∂2Ui
∂ai(z)

2 < 0. This is true if the fringe has constant relative risk aversion preferences

with CRRA coefficient less than or equal to 1.

Consequently, we arrive at the same sufficient condition we derived in complete markets.

Step 5: Market Structure Invariance.

Consider a different Z × K payoff matrix B with an equivalent asset span and asset price vector

pB (AB). By this, we mean that there exist vectors aB
i , such that:

X′ai = B′aB
i . (A.20)

Similar exercises can be done for the asset positions aB
f of the fringe.

It is immediate from Step 1 that the prices pB (AB) satisfy:

pB
(

AB
)
= BΠMB

f , (A.21)

and that

Λ
(

AB
)
= BΠΓBB′ ΓB

j,k = −mB′
f (z) 1{j=k}.

Consider now the analogue of the first-order necessary conditions for optimal asset demand of

strategic agent i from Step 2:

pB
(

AB
)
= BΠM i + BΠΓBB′aB

i . (A.22)

Suppose now that the consumption allocations of strategic agents and the fringe are the

same under asset span B as under X. This implies that ΓB = Γ. Notice then that we can manipulate

Eq. (A.22), substituting with Eqs. (A.21) and (A.20):

Λ f = Λi + ΠΓB′aB
i = Λi + ΠΓX′ai. (A.23)
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Multiplying by X, we arrive at:

p (A) = XΠM i + XΠΓX′ai,

which is the first-order condition for optimal asset demands under asset span X. Consequently,

strategic agents choose the same optimal state-contingent exposures as under both asset spans.

Finally, we show that the portfolio of strategic agent i costs the same under asset span X

as under B. This is trivial, however, because:

p
(

AB
)′

aB
i = M ′f ΠB′aB

i = M ′f ΠX′ai = p (A)′ ai,

as required. Consequently, equilibrium allocations are invariant to the market structures that

implement the same asset span. �

A.2 Proof of Proposition 2

Step 1: Existence of a Market Equilibrium in Pure Strategies.

As a result of Berge’s Theory of the Maximum, the optimal policies of each strategic agent are

compact-valued, upper hemi-continuous correspondences. In addition, we recognize that because

the budget constraint of each strategic agent is affine in its consumption that the image, {c1,i +

∑j pjai,j ≤ wi} at date 1 and {c2,i (z) − ∑j xj (z) ai,j ≤ yi (z)} at date 2 for z ∈ Z , are convex

sets when optimizing over {ai,j}J
j=1.3 By Roxin’s Condition, then, because the image of the action

space to the agent’s budget constraint is convex, the agent’s constraint set for its optimal policy

correspondence is also convex.

We can then construct a mapping from a conjectured set of asset positions for all strategic

agents to an optimal set of asset positions using the market-clearing conditions (1) and the optimal

policy correspondences as an equilibrium correspondence whose image is a compact, convex set.

We can then apply Kakutani’s Fixed Point Theorem to conclude that an upper hemicontinuous

correspondence from a compact, convex set to itself has at least one fixed point. Consequently, an

equilibrium in pure strategies exists.

3Although ∑J
j=1 pjai,j is not convex because of market power, consumption can adjust to satisfy the budget con-

straint.
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Step 2: Uniqueness of the Market Equilibrium in Pure Strategies.

To characterize the uniqueness of a market equilibrium in pure strategies, we follow Rosen (1965)

and construct the potential function φ (a, r):

φ (a, r) =
N

∑
i=1

ri

1/µ

∑
k=1

φi,k (a, r) + rN+1φ f (a, r) , (A.24)

where a stacks the vectors ai 1/µ times from i = 1 to i = N and that of the competitive fringe a f ,j,

{ri}N+1
i=1 form the elements of r and are arbitrary nonnegative weights that sum to 1, and φi (a, r)

and φ f (a, r) are given by:

φi,k (a, r) = ui,1

(
wi −

J

∑
j=1

pjai,j

)
+ ∑

z∈Z
π (z) ui,2

(
yi (z) +

J

∑
j=1

xj (z) ai,j

)
, (A.25)

and

φ f (a, r) = wi −
J

∑
j=1

pja f ,j + ∑
z∈Z

π (z) u f ,2

(
yi (z) +

J

∑
j=1

xj (z) a f ,j

)
, (A.26)

and where we have substituted for each agent’s consumption using their budget constraints from

decision problems 2 and 3, respectively. We note the payoff functions are the same for all agents k

of a strategic type i.
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We can then define the pseudo-gradient of φ (a), ∇aφ (a) as:

∇aφ (a, r) =



r1∇a1 (u1,1 (c1,1) + ∑z∈Z π (z) u1,2 (c2,1 (z)))

. . .

r1∇a1 (u1,1 (c1,1) + ∑z∈Z π (z) u1,2 (c2,1 (z)))

r2∇a2 (u2,1 (c1,2) + ∑z∈Z π (z) u2,2 (c2,2 (z)))

. . .

r2∇a2 (u2,1 (c1,2) + ∑z∈Z π (z) u2,2 (c2,2 (z)))

. . .

rN∇aN (uN,1 (c1,N) + ∑z∈Z π (z) uN,2 (c2,N (z)))

. . .

rN∇aN (uN,1 (c1,N) + ∑z∈Z π (z) uN,2 (c2,N (z)))

rN+1∇a f

(
u f ,1

(
c f ,N

)
+ ∑z∈Z π (z) u f ,2

(
c2, f (z)

))



, (A.27)

which is the (N/µ + 1) J × 1 vector of stacked first-order conditions from each agent’s optimiza-

tion program that holds fixed the strategies of the other strategic agents. Our object of interest is

the Jacobian of the vector ∇aφ (a, r) with respect to a, Φ (a, r). The market equilibrium is unique

if 1
2 (Φ (a, r) + Φ′ (a, r)) is negative definite for all a that satisfy each agent’s budget constraint

and the market-clearing conditions in Eq. (1).

Notice, however, that because of the anonymity of asset prices pj and price impact p′j, the

Jacobian Φ (a, r) has the special partitioned structure:

Φ (a, r) =

1 N
µ
⊗ K (a, r)

0J×NJ .

 (A.28)

where 1 N
µ

is the vector of ones of size N
µ ,⊗ is the Kroneker product, 0J×(1+ N

µ )J is a matrix of zeroes,
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and:

K (a, r) =



Φ{1,1} µΦ{1,−1} µΦ{1,−1} . . . µΦ{1,−1} m f Φ{1,−1}

µΦ{2,−2} Φ{2,2} µΦ{2,−2} . . . µΦ{2,−2} m f Φ{2,−2}

µΦ{3,−3} µΦ{3,−3} Φ{3,3} . . . µΦ{3,−3} m f Φ{3,−3}

. . . . . . . . . . . . . . . . . .

µΦ{N,−N} µΦ{N,−N} µΦ{N,−N} . . . Φ{N,N} m f Φ{N,−N}


. (A.29)

for J × J matrices Φi,i and Φi,−i. The diagonal matrices Φi,i are the Jacobians with respect to ai of

∇ai φi (a, r). The off-diagonal matrices Φi,−i are the Jacobians with respect to a−i of ∇ai φi (a, r),

which are the same for each i′ because all agents enter symmetrically into asset prices pj with

a factor µ except for the fringe, which enters with a factor m f . The second derivatives for the

competitive fringe’s problem are all identically zero (i.e., the zero matrices) because the asset price

is always exactly equal to the fringe’s marginal utility from its first-order conditions.

It is immediate then that:

1
2

∆a′
(
Φ (a, r) + Φ′ (a, r)

)
∆a =

N

∑
i=1

∆a′iΦ{i,i}∆ai +
1
2

N

∑
i=1

∆a′iΦ{i,−i}

(
∑
i′ 6=i

∆ai′ + m f ∆a f

)

+
1
2

N

∑
i=1

(
∑
i′ 6=i

∆ai′ + m f ∆a f

)′
Φ′{i,−i}∆ai. (A.30)

By market clearing, ∑N
i=1 ∆ai + m f ∆a f = 0, and consequently Eq. (A.30) becomes:

1
2

∆a′
(
Φ (a, r) + Φ′ (a, r)

)
∆a =

N

∑
i=1

∆a′i

(
Φ{i,i} −

1
2

µ
(

Φ{i,−i} + Φ′{i,−i}

))
∆ai. (A.31)

We define Λj (A) = xjΓX′ to be the 1× J price impact vector for asset j, and Λ′j (A) =

xjΓ′X′ its derivative with Γ′k,l = π (k) u′′′
(
c2, f (k)

)
1{k=l}. Finally, we define:

vi,j = Λj (A) ej +
µ

m f
Λ′j (A) ai. (A.32)

Invoking strategic agent i’s first-order condition for its optimal asset position, Eq. (A.6),
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notice that we can then write Φ{i,−i} as:

µΦ{i,−i} = riu′′
(

wi −
J

∑
j=1

pjai,j

)
µ

m f



(x1ΠM i)Λ1 (A) ai . . . (x1ΠM i)ΛJ (A) ai

(x2ΠM i)Λ1 (A) ai . . . (x2ΠM i)ΛJ (A) ai

. . . . . . . . .

(xJΠM i)Λ1 (A) ai . . . (xJΠM i)ΛJ (A) ai



−riu′
(

wi −
J

∑
j=1

pjai,j

)
µ

m f



vi,1 0 . . . 0

0 vi,2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . vi,J


. (A.33)

Notice now that because all strategic agents have the same price impact, Φ{i,i}− 1
2

(
Φ{i,−i} + Φ′{i,−i}

)
simplifies to the sum of two J × J matrices, i.e.,

1
2

∆a′
(
Φ (a, r) + Φ′ (a, r)

)
∆a =

N

∑
i=1

ri∆a′i

(
Fi +

1
2

u′′
(

wi −
J

∑
j=1

pjai,j

)
µ

m f
Bi

)
∆ai, (A.34)

where the first a diagonal matrix Ai contains negative diagonal elements:

Fi{j, j} = ∑
z∈Z

π (z) xj (z)
2 u′′

(
yi (z) +

J

∑
j=1

xj (z) ai,j

)
− u′

(
wi −

J

∑
j=1

qjai,j

)
µ

m f
Λj (A) ej, (A.35)

and the second is a skew-symmetric matrix Bi with off-diagonal elements:

Bi{j, j′} =
(
xjΠM i

)
Λj′ (A) ai −

(
xj′ΠM i

)
Λj (A) ai. (A.36)

Because Fi is a negative definite matrix, ∑N
i=1 a′iFiai < 0 for all feasible a that satisfy

agents’ budget constraints and the market clearing conditions. In addition, because Bi is a skew-

symmetric matrix, we have that ∑N
i=1 a′i

(
1
2 u′′

(
wi −∑J

j=1 pjai,j

)
µ

m f
Bi

)
ai ≡ 0.

Therefore,
1
2

∆a′
(
Φ (a, r) + Φ′ (a, r)

)
∆a =

N

∑
i=1

ri∆a′i A∆ai < 0, (A.37)

which establishes the global uniqueness of the equilibrium in pure strategies, conditional on the
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pricing functional, and this is true for any size of strategic agents, µ, number of assets, J, number of

states, Z , and payoff matrix, X. Finally, we recognize that the pricing function is uniquely pinned

down by the competitive fringe’s marginal utility. This completes the proof.4 �

A.3 Proof of Proposition 4

Step 1: The Fictitious Asset Span.

We begin with the first part of the claim. Consider the Cournot-Walras equilibrium allocation

of strategic agents of type i in the economy with imperfect competition,
{(

c1,i, {ci (z)}z∈Z
)}N

i=1 .

Define:

π (z)mi (z) = p (z) + p′ (z) ai (z) ∀ (i, z) , (A.38)

to be the implied state price deflator of agent i in state z.

Now consider a fictitious incomplete-markets economy in which all agents behave com-

petitively and take prices as given. In this fictitious economy, all agents have the same state prices

that they have in the market equilibrium, except now we counterfactually assume that they traded

competitively.

Our goal is to find an equivalent implied market structure, indexed by a set of K ≤ Z

securities with a K× Z return matrix X̃ that spans the K (linear combinations of the Z) states, that

justifies their ex post dispersion in state prices if these were the assets the agents counterfactually

traded. Since our model is static, a security’s return is just its dividend yield (i.e., X̃k = Xk/pk

for dividend process Xk and price pk of security k). We later derive the dividends and prices

separately using the competitive fringe. Because the synthetic assets can be derivatives, X̃ can

also have negative entries.

The no arbitrage condition for a competitive agent i in security k is the standard Euler

equation:

∑
z∈Z

π (z)mi (z) x̃k (z) = 1, (A.39)

4In fact, we establish the stronger result that this uniqueness holds conditional on any increasing pricing functional
that preserves the anonymity of agents’ price impact, which is a fairly mild requirement.
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which we stack into the matrix equation:

MΠX̃k = ιN . (A.40)

For a given security k, there is one condition for each of the N types of strategic agents, giving

rise to N conditions for each security and N × K conditions in total. As shown later, we do not

need to include the fringe in this construction. This is because their no arbitrage conditions will

be trivially satisfied by the definition of the fictitious incomplete-markets equilibrium because we

have the freedom to specify security prices p after recovering X̃.

Our goal is to find as many linearly independent solutions to Eq. (A.39) as is feasible, each

corresponding to a different security. The maximum number of securities we can recover is our

K, i.e., K = maxk∈{0,...,Z}
{

rank
(
X̃
)
= k

}
. We want the maximum number of securities because, if

there were an additional asset that replicated the asset span, introducing it would not initiate trade

because it would already be priced at its no arbitrage value by all strategic agents. Note that the

rank ofM satisfies rank (M) ≤ min{N, Z}. If N < Z, then the system is always under-identified

and can have many solutions, while if N = Z, then it may have a unique solution if it is identified.

Since we assume N ≤ Z, these are the two cases that we consider in the paper. If instead N > Z,

it may be over-identified and have no solution (in which case X̃ is the empty set).

To see the content of Eq. (A.40), suppose that all agents were actually competitive instead

of strategic. In this case, their state prices would be aligned ex post (i.e., mi (z) = mi′ (z) = m (z)

for all i, i′), and M would reduce to ιN MTΠ, where ΠM is the vector of unique state prices. In

this case, we can stack Eq. (A.40) across K securities to find:

ιN MTΠX̃T = ιNιT
K, (A.41)

reducing Eq. (A.41) to:

X̃ΠM = ιK. (A.42)

It is then clear that a solution to Eq. (A.42) is X̃T = diag (M)1, where diag is the diagonal operator

on the vector M. As is immediate, this corresponds to the complete market with Arrow-Debreu

securities each with payoff 1 and price π (z)m (z) for state z. Note that this argument does not rely
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on the number of agents, so state price dispersion from market power is needed for the fictitious

asset span not to be complete markets.

With this return matrix X̃, we construct a restricted asset span that measures the degree of

market incompleteness by replicating the effective asset span of the Cournot-Walras equilibrium

with complete markets. Since at least one state price is misaligned among large agents, rank(X̃) <

Z, markets must be incomplete.

We next establish a sufficient condition that ensures a nontrivial solution to Eq. (A.42). By

the Fredholm alternative theorem, either Eq. (A.40) has a solution or there exists a nontrivial y,

such that:

My = 0Z and yTιN 6= 0. (A.43)

Since N < Z, we can rewrite the first condition in Eq. (A.44) as:

MTMy = 0N . (A.44)

Provided that the N × N matrixMTM is non-singular, the only solution to Eq. (A.44) is the zero

vector. We therefore require that the second moment matrix of state prices is full rank.

Step 2: Equivalence with the Market Equilibrium.

We next verify that the fictitious competitive economy constitutes a competitive equilibrium with

no trade. Note that, by construction, the competitive fringe has the same consumption in both

economies. The fringe’s state prices are therefore the same in both economies (i.e., p (z)). For the

fringe to correctly price all assets, we require that:

∑
z∈Z

x̃k (z) p (z) = ιK ∀ k ∈ {1, ..., K}. (A.45)

Since X̃ is a return matrix (dividend divided by price), we have the freedom to rewrite x̃k (z) as

xk (z) /pk for security price pk. Consequently, we can use Eq. (A.45) to find price pk and dividend

processes xk (z) that satisfy no arbitrage for the fringe. Consequently, asset prices pk for k ∈
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{1, ..., K} satisfy:

pk = ∑
z∈Z

xk (z) p (z) . (A.46)

Note that we construct the fictitious competitive economy to satisfy the Euler equations of

strategic agents at no trade when they behave competitively. Since we endow these agents with

their consumption allocations in the market equilibrium, the equilibrium consumption allocations

for strategic agents are also the same in both economies.

Finally, we check whether the consumption allocation has the same value in the fictitious

competitive economy (can be financed with each agent’s initial resources). For the allocation to

have the same value, the restricted asset span portfolio must have the same cost as the complete

markets portfolio for all large agents:

∑
z∈Z

p (z) ai (z) = ∑
k∈{1,...,K}

pk (c2,i (z)− yi (z)) . (A.47)

Substituting Eq. A.46 into Eq. A.48, this condition reduces to:

∑
z∈Z

p (z)

(
ai (z)− ∑

k∈{1,...,K}
xk (z) (c2,i (z)− yi (z))

)
= 0, (A.48)

where we can switch the order of summations because Z is finite and K ≤ Z. Note, however, that:

ai (z)− ∑
k∈{1,...,K}

xk (z) (c2,i (z)− yi (z)) = 0 ∀ z ∈ Z , (A.49)

holds trivially by definition for the allocations to be replicated in the fictitious economy. Conse-

quently, the equilibrium allocation has the same value, consistent with no arbitrage for strategic

agents’ consumption portfolios.

Step 3: Orthogonality to the Market-Implied Stochastic Discount Factor.

Consider the Hansen and Jagannathan (1991) decomposition of an admissible SDFs into:

mi (z) = m (z) + (mi (z)−m (z)) , (A.50)
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where a generic m (z) is a SDF. This SDF is implied by market prices if:

m (z) = m̄ +
(
X̃ (z)− X̃Π

)
β (M) , (A.51)

and m̄ is the market-implied mean of the state-price function, i.e., m̄ = ∑z∈Z p (z), or the inverse of

the market-implied risk-free rate. As any admissible SDF, m (z), necessarily takes this functional

form, so does the unique market-implied SDF, m∗ (z), which is also the minimum variance SDF

for a given SDF mean.

From Hansen and Jagannathan (1991), m∗ (z) is defined by:

β (m̄) = Σ−1 (ιK − m̄X̃ΠiK
)

, (A.52)

where Σ is the covariance matrix of returns. By construction, one has that:

Cov (m∗ (z) , mi (z)−m∗ (z)) = 0. (A.53)

For any mi (z) and mi′ (z), by the linearity of the covariance operator, we have:

Cov (m∗ (z) , mi (z)−mi′ (z)) = 0. (A.54)

Substituting Eq. (A.52) into Eq. (A.51):

m∗ = m̄iK +
(
X̃−ΠX̃

)
Σ−1 (ιK − m̄ΠX̃iK

)
, (A.55)

and it follows that for each security m:

Cov (x̃k, mi (z)−mi′ (z)) = 0 ∀ k, i, i′, (A.56)

which reveals that the asset span is orthogonal to all residual gains from trade among strategic

agents. �
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A.4 Proof of Proposition 5

Step 1: Constrained Efficient Asset Span.

Define initial transfers to be τi for i ∈ {1, ..., N, f } such that:

N

∑
i=1

τi + m f τf = 0. (A.57)

For Pareto weights, ωi ≥ 0, such that ∑N
i=1 ωi + ω f = 1, our social welfare criterion is

Pareto-weighted welfare:

W(~X J ; {ωi}N
i=1) =

N

∑
i=1

ωiui,1(wi + τi −MT
f ΠXTai) + ∑

z∈Z
π (z)

N

∑
i=1

ωiui,2(ezXTai + yi(z))

+m f ω f

(
∑

z∈Z
π (z) u f ,2(ezXTa f + y f (z)) + w f + τf −MT

f ΠXTa f

)
s.t. : (A.1), (A.6), (A.58)

where ~X J is the vectorization of the J × Z payoff matrix XT of size ZJ × 1 for each J ∈ {1, ..., Z}.

This optimization is subject to the first-order necessary conditions for the asset positions of all

strategic agents from Eq. (A.6) and the competitive fringe.5

Let ∇~X J
be the Gateaux differential operator in the direction ψ for an arbitrary variation

~X J + ηψ as η → 0. Then, we have that at the optimal choice of X for J assets. At the optimal choice

of ~X J , we have that Invoking the Envelope Condition, the first-order necessary conditions (A.6),

and properties of matrix calculus and the Kroneker product, we can characterize the Jacobian of

the expected utility of agent i with respect to the payoff matrix, ∇~X J
Ui, as:

∇~X J
Ui = u′i,1 (ci,1) ∑

z∈Z

(
π (z) Mi (z) eT

z −ΠM f

)
⊗ ai

−u′i,1 (ci,1)∇~X J
MT

f ΠXTai +
µ

m f
u′i,1 (ci,1)∇~X J

aiXΓXTai, (A.59)

and:

∇~X J
U f = ∑

z∈Z

(
π (z) M f (z) eT

z −ΠM f

)
⊗ a f −∇~X J

MT
f ΠXTa f , (A.60)

5The budget constraints of strategic agents and the competitive fringe from Eqs. (2) and (3), respectively, have
already been substituted into the welfare objective.
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where ∇~X J
ai can be recovered from applying the Implicit Function Theorem to equation (A.6).

The change in welfare for agent i ∈ {1, ..., N, f } for an arbitrary market structure and initial

transfer policy is then:

dUi = ∇T
~X J

Uid~X J + u′i,1 (ci,1) dτi. (A.61)

Let V = ∑N
i=1 dUi/u′i,1 (ci,1) + m f dU f . Substituting ∑z∈Z π (z) Mi (z) eT

z ⊗ ai = ΠM i ⊗ ai,

∑z∈Z π (z) M f (z) eT
z ⊗ ai = ΠM f ⊗ ai, Eq. (A.57), and market clearing conditions in Eq. (1), we

can express V using Eqs. (A.59), (A.60), na as:

V =

(
N

∑
i=1

Π
(

M i −M f
)
⊗ ai +

µ

m f
∇~X J

aiXΓXTai

)T

d~X J , (A.62)

where we recall that XΓXT is the matrix of price impacts and∇~X J
ai is governed by the first-order

conditions in Eq. (A.6).

It is immediate that any constrained-efficient asset span will satisfy the necessary condition

V = 0, which to hold generically requires from Eq. (A.62) that:

N

∑
i=1

Π
(

M i −M f
)
⊗ ai +

µ

m f
∇~X J

aiXΓXTai = 0ZJ , (A.63)

for the ZJ× 1 vector of zeroes, 0ZJ and asset allocations that satisfy the first-order conditions (A.6).

If a payoff matrix X maximizes each agent’s welfare, then Eq. (A.63) is satisfied, and welfare is

maximized regardless of the planner’s Pareto weights.

The first term in Eq. (A.63) reveals that the planner will raise asset payoffs in states in

which, on average, strategic agents are buyers and have higher stochastic discount factors than

the fringe, which improves risk sharing. The second term is how changing asset payoffs mitigates

or exacerbates the distortions to strategic agents’ portfolios because of price impact. If the strate-

gic agent is a buyer in the asset, then welfare is improved by having the strategic agent buy more

through changing the asset span (i.e., elements for which ∇~X J
ai,j > 0).

Step 2: Construction of Equivalent Economy with Restricted Asset Span.

First, consider an arbitrary payoff vector X with K assets and prices p. Suppose we can construct

asset positions for each type of agent, aR
ik, for i ∈ {1, ..., N} and k ∈ {1, ..., K}, that replicate the
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consumption allocations in complete markets without any trading restrictions:

XTaR
i = aC

i ∀ i ∈ {1, ..., N}, (A.64)

where aR
i and aC

i are vectors of asset positions for restricted and complete markets, respectively.

Second, because all consumption allocations at date 2 are the same, this also applies to

the fringe. Stochastic discount factors must therefore be the same under both market structures,

MR
f = MC

f . Since the fringe’s state prices are the Arrow prices with complete markets, p, and

there is no arbitrage, asset prices in the restricted asset span, q, satisfy:

q = Xp = XMC
f . (A.65)

Third, we establish consumption allocations are the same at date 1, i.e., that the complete markets

consumption allocations are marketed with the restricted asset span. Given Eqs. (A.64) and (A.65),

however, this result is immediate since:

qTaI
i = pTXTaI

i = pTaC
i ∀ i ∈ {1, ..., N}.

Therefore, the complete markets equilibrium allocations are marketed.

Fourth, we establish that all agents’ decision problems are satisfied. The fringe’s Euler

equations are trivially satisfied because asset prices are derived from its state prices. For strategic

agent i, we can rewrite its first-order necessary condition for its optimal asset demand as:

q +
µ

m f
ΓRaR

i = XΠMR
i , (A.66)

where ΓR is the price impact matrix under the restricted asset span. By no arbitrage from Eq.

(A.65), we recognize:

ΠΓR = XΠΓCXT, (A.67)

where ΓC is the diagonal complete markets price impact matrix with diagonal entries ΓC
z,z =

−u′′
(
c2, f (z)

)
. It is straightforward to see this matrix is symmetric and full rank.

Substituting these results into Eq. (A.66), and recognizing MR
i = MC

i because equilibrium
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allocations are the same, the first-order necessary conditions then reduce to:

aR
i =

m f

µ

(
XΠΓCXT

)−1
XΠ

(
MC

i −MC
f

)
. (A.68)

Note that when X = IdZ, so that markets are complete, then:

aC
i =

m f

µ

(
ΓC
)−1 (

MC
i −MC

f

)
. (A.69)

Substituting Eq. (A.69) into Eq. (A.68), we arrive at:

aR
i =

(
XΠΓCXT

)−1
XΠΓCaC

i . (A.70)

Substituting Eq. (A.64) into Eq. (A.72), we arrive at the identity aR
i = aR

i .6 Consequently, the

first-order necessary conditions of strategic agents are also satisfied.

To see this set of payoff matrices is non-void, suppose we choose J = N and the payoff

matrix X to be such that aR
i = ei, i.e., each strategic agent type trades only one asset. Stacking all

strategic agent’s complete-markets asset positions into the Z× N matrix AC =
[
aC

1 aC
2 ... aC

N
]
, we

have from Eq. (A.72) that:

XΠΓC
(

XT − AC
)
= 0N×N , (A.71)

where 0N×N is the N × N matrix of zeroes, from which follows that one solution is

X =
(

AC
)T

= M̃
(

ΓC
)−1

, (A.72)

where M̃ is the N × Z matrix with column vectors that are the difference between each strategic

agent’s and the competitive fringe’s SDFs, M̃ i =
(

µ
m f

)−1 (
M i −M f

)
. X is therefore the payoff

matrix whose payoffs are precisely the asset positions the strategic agents would have taken in

complete markets with Arrow assets. Because N < Z, this is a restricted asset span.

Step 3: Complete Markets.

6We can derive Eq. (A.72) from Eq. (A.64) by using the price impact matrix,
(
ΠΓC)−1, as a weighting matrix to

project X onto aC
i .
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Finally, we establish that imposing no portfolio restrictions (i.e., complete markets) is constrained

inefficient in the presence of market power. By contrast, if there were perfect competition and

complete markets, then MT
i = MT

f and µ
m f

= 0, and the two terms in Eq. (A.62) are zero. Therefore

V = 0, and laissez faire complete markets with perfect competition is constrained-efficient.

Consider now the bespoke N × Z payoff matrix X that replicates the complete markets

equilibrium from Step 1 in which J = N. From Step 2, we can replicate the market equilibrium

without portfolio restrictions with a N×Z payoff matrix M̃
(
ΓC)−1 that has a restricted asset span.

Conditional on this payoff matrix, we have that ai = ei and the first-order conditions of all

strategic agents are satisfied. If complete markets is optimal, the vector Eq. (A.62) is satisfied with

equality at X = M̃
(
ΓC)−1:

V =
N

∑
i=1

Π
(

M i −M f
)
⊗ ei +

µ

m f
∇~X J

ai|ai=ei M̃
(

ΓC
)−1

M̃Tei. (A.73)

However, the first term in Eq. (A.73) is nonzero from our analysis without portfolio regulation

because marginal valuations across agents are misaligned state-by-state, and the sum of the two

terms is generically nonzero. Consequently, the market equilibrium without portfolio restrictions

is constrained inefficient. �

A.5 Proof of Proposition 6

Step 1: Pure Risk Sharing Case.

First, consider the case of complete markets without any restrictions on what agents can trade.

In this case, the asset price is the same for both the high and low states by symmetry, and we

designate it pcmp. Let aB > 0 be the position of an agent when it buys the asset and aS < 0 be the

position when it sells. Imposing market clearing, welfare for a strategic agent is:

Ui(I2, µ) = u
(
ȳ− pcmp (aB + aS)

)
+

1
2

u (ȳ− ∆ + aB) +
1
2

u (ȳ + ∆ + aS) ,

while for the fringe, it is:

U f (I2, µ) = 2pcmp (aB + aS) + m f u
(

ȳ− aB + aS

m f

)
,
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where:

pcmp =
1
2

u′
(

ȳ− aB + aS

m f

)
.

Recall the competitive fringe has the same date 2 preferences as the strategic agents. As a result of

the convexity of marginal utility with symmetric preferences, sellers restrict their asset positions

more than buyers. As such, aB + aS > 0.

By contrast, with the aggregate swap, both agents take a symmetric position of a when

buying and −a when selling, and internally clear the swap market without the fringe. Let the

price of an Arrow asset when only a swap is traded be pin. Welfare for a strategic agent is then:

Ui([1− 1], µ) = u (ȳ) +
1
2

u (ȳ− ∆ + a) +
1
2

u (ȳ + ∆− a) ,

while for the fringe is now:

U f ([1− 1], µ) = m f u (ȳ) .

Since the competitive fringe has concave utility, prices are increasing in the net demand of strategic

agents, and it follows:

pcmp =
1
2

u′
(

ȳ− aB + aS

m f

)
>

1
2

u′ (ȳ) = pinc.

As such, |aS| < aB < a because insurance is more expensive in complete markets.

We first show that the utility of the competitive fringe is higher when only the swap is

traded. This is because, to first-order, there is no gain with complete markets over the swap be-

cause the competitive fringe prices both Arrow securities based on its marginal utility. However,

to second-order, the fringe has lower consumption at date 2 in both states. Formally, approximat-
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ing u
(

ȳ− aB+aS
m f

)
around ȳ to second-order:

U f ([1− 1], µ)−U f (I2, µ)

= m f u (ȳ)−m f u
(

ȳ− aB + aS

m f

)
− 2pcmp (aB + aS)

≈ m f u (ȳ)−m f u (ȳ) + m f u′ (ȳ)
aB + aS

m f
− 2pcmp (aB + aS)−

1
2

m f u′′ (ȳ)
(

aB + aS

m f

)2

= −1
2

m f u′′ (ȳ)
(

aB + aS

m f

)2

> 0

because pcmp = 1
2 u′
(

ȳ− aB+aS
m f

)
and the fringe has concave utility.

We next show that the utility of both strategic agents is higher with the swap. Because of

symmetry, we need only show this for one strategic agent. Comparing welfare under complete

markets and the swap, and taking a first-order approximation of u
(
ȳ− pcmp (aB + aS)

)
around ȳ,

we have that:

Ui([1− 1], µ)−Ui(I2, µ) (A.74)

= u (ȳ)− u
(
ȳ− pcmp (aB + aS)

)
+

1
2

u (ȳ− ∆ + a) +
1
2

u (ȳ + ∆− a)

−1
2

u (ȳ− ∆ + aB)−
1
2

u (ȳ + ∆ + aS)

≈ 1
2
[u (ȳ− ∆ + a) + u (ȳ + ∆− a)− (u (ȳ− ∆ + aB) + u (ȳ + ∆ + aS))]

+u′ (ȳ) pcmp (aB + aS) . (A.75)

Note that pcmp (aB + aS) > 0 (i.e., both strategic agents must buy some insurance from the fringe),

while no money initially changes hands among strategic agents with the swap.

Let ∆a = ∆− a ≥ 0, δB = aB − a ≤ 0, and δS = aS + a ≥ 0. Because |aS| < aB, we have that

δB + δS = aB + aS > 0. Since u (·) is strictly concave:

u (ȳ− ∆a) + u (ȳ + ∆a) + m f u (ȳ) ≥ u (ȳ− ∆a + δB) + u (ȳ + ∆a + δS) (A.76)

+m f u
(

ȳ− δB + δS

m f

)
,
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with equality when µ = 0. This is because the arguments in the left-hand and right-hand sides of

Eq. (A.76) are just a reshuffling of the allocations:

ȳ− ∆a + ȳ + ∆a + m f ȳ = ȳ− ∆a + δB + ȳ + ∆a + δS + m f ȳ− δB − δS,

in which the fringe consumes less and each strategic agent has higher volatility in their consump-

tion.

It then follows from inequalities in Eqs. (A.75) and (A.76), taking another first-order ap-

proximation, that:

Ui([1− 1], µ)−Ui(I2, µ) >
1
2

m f

(
u
(

ȳ− aB + aS

m f

)
− u (ȳ)

)
+ u′ (ȳ) pcmp (aB + aS)

≈
(

u′ (ȳ) pcmp −
1
2

u′ (ȳ)
)
(aB + aS)

=
(
u′ (ȳ) pcmp − pinc

)
(aB + aS)

>
(
u′ (ȳ)− 1

)
pcmp (aB + aS) , (A.77)

because pcmp > pinc. Consequently, if u′ (ȳ) ≥ 1, it follows from inequality (A.77) that:

Ui([1− 1], µ) ≥ Ui(I2, µ), (A.78)

and restricting all agents to trade the swap when µ > 0 represents a Pareto improvement over

complete markets.

Step 2: Pure Aggregate Risk Case.

We first show that with complete markets, the less risk-averse agent 2 supplies too little of the Ar-

row asset claim to the risk-averse agent 1 in the low aggregate state l compared to the competitive

equilibrium. From Eq. (A.6), the first-order necessary condition for agent i with complete markets

in the low state l is:
1
2

u′i,2 (yl + ai,l)

u′i,1 (ȳ− plai,l − phai,h)
= pl +

µ

m f
p′lai,l , (A.79)
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and in the high state is:
1
2

u′i,2 (yh + ai,h)

u′i,1 (ȳ− plai,l − phai,h)
= ph +

µ

m f
p′hai,h, (A.80)

where ph = 1
2 u′1,2

(
yh + a f ,h

)
and p′h = 1

2
µ

m f
u′′1,2

(
yh + a f ,h

)
, and similarly with the low state claim

price and price impact.

Consider the limit where m f → 0, so that a1,z + a2,z → 0 for z ∈ {l, h}, and µ
m f
→ κ > 0.

Because agent 1 is less risk-averse than agent 2, agent 1 will insure agent 2 by selling the low-state

claim and buying the high state claim (i.e., a2,l < 0 < a2,h). By contrast, agent 1 buys the low-state

claim and sells the high state claim (i.e., a1,h < 0 < a1,l).

Let the asset positions in the high-state claim be a1,h = −a2,h = −ah, and in the low-state

claim be a1,l = −a2,l = al . It then follows from Eqs. (A.79) and (A.80) that:

u′2,2 (yl + al)

u′2,2 (yh − ah)
<

u′1,2 (yl − al)

u′1,2 (yh + ah)
. (A.81)

In the competitive equilibrium (in which κ = 0), condition (A.81) instead holds with equal-

ity. Let the perfect competition asset positions be ap
l and ap

h for the low- and high-state claims, re-

spectively. It then follows that with market power, agent 2 supplies too little of the low-state claim

(i.e. al < ap
l ), and buys too little of the high-state claim (i.e., ah < ap

h), and this distorts the marginal

rates of transformation across states for both agents. That the strategic agents trade in opposite

directions (i.e., strategic agent 1 buys low-state claims and sells high-state claims), motivates us to

consider a swap as the asset that is traded in the restricted span.

We next show that restricting trade to a swap reduces strategic agents’ market power. Let

the payoff vector of the swap be [xh xl ] and the price of this swap be p∗. Without loss, we designate

xl > 0 and normalize xh = −1 < 0. Because m f → 0, the market for the swap clears internally

between the two strategic agents. Let the position in the swap of agent 1 be a∗ and that of agent 2

be −a∗.

The first-order necessary condition for strategic agent 1’s optimal position in the swap is:

xh
1
2

u′1,2 (yh + xha∗)
u′1,1 (ȳ− p∗a∗)

+ xl
1
2

u′1,2 (yl + xla∗)
u′1,1 (ȳ− p∗a∗)

= p∗ + κp∗′a∗, (A.82)
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and for agent 2:

xh
1
2

u′2,2 (yh − xha∗)
u′2,1 (ȳ + p∗a∗)

+ xl
1
2

u′2,2 (yl − xla∗)
u′2,1 (ȳ + p∗a∗)

= p∗ − κp∗′a∗. (A.83)

Without loss, we can rewrite the asset positions in the complete markets economy as al =

xlac − δ and ah = xhac, and define pc = xl pl + xh ph and pc′ = x2
l p′l + x2

h p′h by no arbitrage based

on the fringe’s first-order conditions. Multiplying the first-order conditions for the low- and high-

state claims by xl and xh, Eqs. (A.79) and (A.79) respectively, and adding them together, we find

for agent 1:

xl
1
2

u′1,2 (yl + xlac − δ)

u′1,1 (ȳ− pcac + plδ)
+ xh

1
2

u′1,2 (yh + xhac)

u′1,1 (ȳ− pcac + plδ)
= pc + κpc′ac − κp′lxlδ. (A.84)

and for agent 2:

xl
1
2

u′2,2 (yl − xlac + δ)

u′2,1 (ȳ + pcac − plδ)
+ xh

1
2

u′2,2 (yh − xhac)

u′2,1 (ȳ + pcac − plδ)
= pc − κpc′ac + κp′lxlδ. (A.85)

If δ = 0, then Eq. (A.84) becomes identical to Eq. (A.82), and similarly with Eqs. (A.85) and

(A.83). In this case, complete markets and the restricted asset span achieve the same allocation,

and therefore the same welfare. Because of market power, one of the two Arrow assets is under-

supplied relative to the other. In what follows, we assume that the low-state claim is under-

supplied by the less risk-averse agent, i.e., δ > 0. The complementary case where the high-state

claim is undersupplied follows an analogous argument in which we define δ to be the under-

supply of the high-state claim.

Consider the special case in which the swap payoff is one-for-one across states (i.e., xl =

1), so that the swap bundles the two Arrow securities into one portfolio. From the first-order

conditions (A.79) and (A.80) in complete markets, strategic agents distort in opposite directions

across the two markets, lowering the price in the market in which they buy and raising it in the

one in which they sell. By bundling the two Arrow securities into a swap with payoff [−1 1], a

strategic agent’s long and short positions are forced to be the same, and that agent can now only

distort in one direction (i.e., buy less of the swap or sell less of it). Because this applies to both

strategic agents, their ability to distort their asset positions for price concessions (i.e., exert market

power) is attenuated.
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We define the state prices for strategic agent 1 in complete markets referencing the high

and low states when [xh xl ] = [−1 1] to be:

M1,h (ac, δ) =
1
2

u′1,2 (yh − ac)

u′1,1 (ȳ− pcac + plδ)
, M1,l (ac, δ) =

1
2

u′1,2 (yl + ac − δ)

u′1,1 (ȳ− pcac + plδ)
, (A.86)

and for agent 2 to be:

M2,h (ac, δ) =
1
2

u′2,2 (yh + ac)

u′2,1 (ȳ + pcac − plδ)
, M2,l (ac, δ) =

1
2

u′2,2 (yl − ac + δ)

u′2,1 (ȳ + pcac − plδ)
. (A.87)

From Eqs. (A.79), (A.84), and (A.85), we have that:

pz =
1
2
(M1,z (ac, δ) + M2,z (ac, δ)) z ∈ {l, h}, (A.88)

κp′z (ac − δ) =
1
2
(M1,z (ac, δ)−M2,z (ac, δ)) , (A.89)

pc = pl − ph. (A.90)

What remains to be shown is that each strategic agent’s welfare is higher when δ = 0

versus δ > 0 in complete markets. Let ∆l (ac, δ) = M1,l (ac, δ)− M2,l (ac, δ) > 0 because agent 2

sells claims to the low state to agent 1 (who therefore must have a higher state price). Taking the

derivative of welfare with respect to δ, substituting with Eqs. (A.88) and (A.89), and recognizing

ac > 0 and δ < ac, we find:7

∂U1 (I2, µ)

∂δ
= u′1,1 (c1,1)

[
pl −M1,l − κp′l (ac − δ)

]
= −u′1,1 (c1,1)∆l (ac, δ)

< 0, (A.91)

while
∂U2 (I2, µ)

∂δ
= u′2,1 (c2,1)

[
−pl + M2,l + κp′l (ac − δ)

]
= 0. (A.92)

It is immediate from Eqs. (A.91) and (A.92) that agent 1 is strictly better off when δ = 0, while

agent 2 is indifferent (i.e., no worse off). The strategic agent who is rationed more in complete

7Because we are performing a comparative static of how welfare varies with δ, and not solving for the equilibrium
choice of δ, we do not have to treat the strategic agent’s first-order conditions as constraints.
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markets, agent 1, is strictly better off because it shares more risk with the less risk-averse agent

2. Agent 2, in turn, is no worse off because the price improvement per unit traded just offsets the

loss in volume traded of the more-rationed Arrow asset when there are only two strategic types

and an arbitrarily small competitive fringe.

Since δ > 0 with complete markets and δ = 0 corresponds to the restricted asset span with

the swap (ac = a∗), welfare is (weakly) higher for both agents with the swap than with complete

markets, and represents a Pareto improvement. Because the planner has the freedom to choose

a xl other than 1, this is a lower bound to how restricting the asset span improves risk sharing.

Since the complete markets allocation with perfect competition is feasible if the planner chooses

xl =
ap

l
ap

h
, the first-best is feasible with both complete markets and a restricted asset span. �

B Counterfactual Span in Canonical Settings

B.1 Example 2

Since strategic agents are ex ante symmetric, there exist two distinct SDF realizations, ml and

mh > ml , such that mi(i) = ml and mi(−i) = mh. Every agent assigns a low (high) marginal

value of consumption to the state with high (low) private returns. Because there are two states,

the equivalent restricted asset span has a single asset. The construction from Proposition 4 shows

the dividend-yield vector [x̃1 x̃2] satisfies:

1
2

mh ml

ml mh


x̃1

x̃2

 =

1

1

 .

Solving this equation gives:

x̃1 = x̃2 =
1

1
2 mh + 1

2 ml
= r∗f .

This asset is a risk-free bond. With two types of strategic agents and diversifiable risk, consump-

tion allocations are such that an outside observer would infer that only a risk-free bond can be

traded. This is because a risk-free bond only allows agents to shift resources across time, whereas

there are gains from trade in shifting resources across states. Because these risks are not fully

shared, the outside observer interprets this as prima facie evidence this risk cannot be traded.
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Alternatively, we can characterize the equivalent restricted asset span using the market-

implied SDF m∗ from Proposition 4. From Hansen and Jagannathan (1991), this SDF is unique and

is the minimum-variance SDF among all admissible ones. Because only a risk-free asset is traded,

we find that m∗ is 1
r∗f

in both states (i.e., the representative investor owns a risk-less portfolio).

We can further identify the “rationed asset” whose return is orthogonal to a risk-free bond

that, if it were available under perfect competition, would allow agents to realize the residual

gains from trade. In this example, it is a simple swap.

Corollary 1 (Missing Asset with Pure Idiosyncratic Risk) A security with payoff [1 x] is orthogonal

to the risk-free bond if and only if: [
1 1

] [
1 x

]′
= 0.

This requires x = −1. The “missing asset” that would have allowed for perfect insurance is therefore an

idiosyncratic risk swap.

B.2 Example 3

With two aggregate states, the implied restricted asset span from Proposition 4 has one asset with

dividend-yield vector [x̃l , x̃h] satisfying:

1
2

mrn mrn

mh ml


x̃h

x̃l

 =

1

1

 .

Solving this equation gives

x̃h =
ml −mrn

1
2 mrn (ml −mh)

and x̃l =
mrn −mh

1
2 mrn (ml −mh)

.

The asset carries exposure to aggregate risk since x̃h > x̃l by Jensen’s inequality. Therefore, it

is a levered market index. Because the risk-neutral agent rations insurance against aggregate

shocks, the outside econometrician would conclude there are no assets that offer sufficient protec-

tion against aggregate risk. This has a natural interpretation: the risk-averse agent can only trade a

market index with a degree of risk exposure that provides no additional insurance opportunities.

Alternatively, we can again characterize the equivalent restricted asset span using the
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market-implied SDF m∗ from Proposition 4. Because only a leveraged market index is traded, if

we choose a mean for m∗ = m̄, we find that m∗ (h) = 2 1−m̄xl
x̃h−x̃l

in the high state, and m∗ (l) = 2 m̄x̃h−1
x̃h−x̃l

in the low state (i.e., the representative investor has a portfolio whose return is positively corre-

lated with the aggregate state). We must specify a mean, m̄, for the market-implied SDF because a

risk-free asset is not traded, and No arbitrage requires that m̄ ∈
[

1
xh

, 1
xl

]
.

Similar to the case of pure diversifiable risk, we can find the “rationed” asset by searching

for the asset whose payoff is orthogonal to the levered market index. Corollary 2 shows that the

missing asset is similar to a put on the stock market.

Corollary 2 (Missing Asset with Pure Aggregate Risk) A security with payoff [1 x] is orthogonal to

the levered equity portfolio if and only if:

[
1 mrn−mh

ml−mrn

] [
1 x

]′
= 0.

This requires x = − ml−mrn
mrn−mh < 0. We can rescale this vector as

[
mrn −mh, mrn −ml

]
, which is an

aggregate risk swap that pays off in the high state and loses money in the low state.

C Regulation of Credit Default Swaps

This appendix provides details on our empirical application to CDS markets. We first derive the

endowment processes of the two strategic agents in our credit default swap application in Section

5. As discussed in the main text, we do so under the assumption that regulation is aligned with the

underlying gains from trade. Second, we provide the model analogues of our empirical moments.

Third, we discuss a mismatch between regulation and the underlying gains from trade.

Income shares. The aggregate endowment is Y at date 0. At date 1, it is Y in state 1 (probability

1− π) and δY in state 2 (probability π). We search for income shares for the two strategic agents

such that in the competitive equilibrium type 1 agents buy 1 unit of the risky bond and ρ units of

the CDS contract. The bond and CDS pay off B and 0 in state 1 and 0 and B in state 2, respectively.

In competitive equilibrium, optimal risk sharing among the two strategic agents implies
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that the price of the Arrow asset in state z satisfies:

p (z) = Pr (z)
(

c11 (z)
c10

)−1

= Pr (z)
(

c21 (z)
c20

)−1

. (A.93)

From this expression, we can conjecture that agents 1 and 2 consume fixed fractions, ω1 and 1−ω1,

of the aggregate endowment at each date and state. It is then immediate that:

p (1) = 1− π, (A.94)

p (2) = πδ−1. (A.95)

Suppose a type 1 agent receives fractions α0 and α1 of the initial and date 1 endowments

in both states, respectively. The present value of his initial wealth satisfies:

α0Y + α1Y = 2ωY. (A.96)

For a type 1 agent to be able to afford buying 1 unit of the risky bond and ρ of the CDS, we require

α0Y = c10 + p (1) B + p (2) ρB = ωY +
(

1− π + πδ−1ρ
)

B. (A.97)

If we set ω = 1
2 , then Eqs. (A.96) and (A.97) imply that:

α0 =
1
2
+
(

1− π + πδ−1ρ
) B

Y
, (A.98)

α1 =
1
2
− 1− π + πδ−1ρ

1− π + πδ−1δ

B
Y

, (A.99)

These income shares implement the competitive equilibrium in which each agent consumes half

of the total endowment when trading the risky bond and the CDS contract.

Mapping to empirical moments. To map our model to the data on sovereign bonds and CDS, we

define the bid-ask spread in an asset market to be the difference in marginal valuations between

the buyer and seller per trade. To be consistent with Sambalaibat (2023), we define the bid-ask

spread of the sovereign bond as a fraction of par and that of the CDS as that of the mid-price,
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which in our setting is the CDS price because it is equal to half the sum of the marginal valuations

of the buyer and seller. For the sovereign bond and CDS contract, these bid-ask spread, bbond and

bCDS, are:

bbond = (1− π)

((
c10

c11 (1)

)
−
(

c20

c21 (1)

))
1

2|a1|
, (A.100)

bCDS = π
B

pCDS

((
c10

c11 (2)

)
−
(

c20

c21 (2)

))
1

2|a2|
. (A.101)

Let pAD (z) be the price of the Arrow asset referencing state z in the presence of market

power. We can define the sovereign bond spread, sbond, as the difference between the bond’s yield

ybond =
B

pAD (1) B
=

1
pAD (1)

, (A.102)

and the risk-free rate in our model:

sbond =
B

pAD (1) B
− 1

pAD (1) + pAD (2)
=

1
pAD (1)

− 1
pAD (1) + pAD (2)

. (A.103)

Finally, we define the CDS-bond basis, which is the zero-volatility (z-)spread minus the

bond spread. The z-spread, z, is defined as the spread that solves:

pCDS =
πB

r + z
, (A.104)

where r is the risk-free rate, from which follows:

z =
πB

pCDS
− r. (A.105)

The CDS-bond basis is then given by:

CDS-bond Basis = z− sbond =
πB

pCDS
− B

pAD (1) B
. (A.106)

We multiply the bid-ask and bond spreads and the CDS-Basis by 100 to convert to percentages.
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Mismatch between regulation and gains from trade. Our calibration recovers the unobserved

endowments of the two strategic agent types under the assumption that regulators’ choice of the

low state payoff of the covered bond, ρB, is well-suited to the underlying gains from trade. Under

this assumption, it was constrained efficient. However, in practice, a regulator may have limited

information about the trading needs of market participants, and may choose a suboptimal value

of ρ that can harm rather than improve market outcomes.
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Figure 1: Bond yield (left panel), bond and CDS bid-ask spreads (middle panel), and welfare (right panel) for
different values of covered bond positions ρB for the parameters given in Table 1 . The baseline calibration
has ρB = 0.6917.

Figure 1 shows equilibrium outcomes for different values of ρ, keeping the underlying en-

dowments fixed. The calibrated economy has ρB = 0.6917, so deviations from this value create

a mismatch between regulation and gains from trade. Bond yields and bid-ask spreads are in-

creasing in ρB, while the CDS bid-ask spread is decreasing. While the welfare of type 2 agents

is decreasing in ρB, that of type 1 agents is hump-shaped. Hence utilitarian welfare (the sum of

both agents’ welfares) can be negative if ρB is too high (or too low, if we extend the axes further).

Hence for certain choices of ρ the regulation is not constrained efficient.
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