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A B S T R A C T

How does financial market concentration affect capital allocation? We propose a complete-markets model in
which real investment and financial price impact are jointly determined in general equilibrium. We identify
a two-way feedback mechanism whereby price impact induces misallocation and misallocation raises price
impact. The mechanism is stronger if productivity is low or productivity dispersion is high. Given rising
dispersion, the model can rationalize trends in corporate discount rates, cash holdings, investment, asset prices,
and capital reallocation over the last two decades, even when market concentration is relatively stable. Overall,
our findings suggest that financial market concentration may hamper allocative efficiency.
1. Introduction

A striking fact about the U.S. economy since the 2000s is that
corporate investment has been weak despite falling risk-free rates and
low costs of capital.1 During this time, large nonfinancial firms also
increased their net lending and accumulation of financial assets, such
as corporate debt, in what has often been referred to as a ‘‘corpo-
rate savings glut’’ (e.g., Gruber and Kamin, 2015). Why were firms
unwilling to invest despite the low costs of capital? One popular
explanation is a dearth in profitable investment opportunities. How-
ever, it is unclear which structural changes would have created such
scarcity, and different explanations may have different policy and
welfare implications.

In this paper, we propose one such alternative explanation: high
financial market concentration and cross-sectional dispersion in invest-
ment opportunities make it difficult for large firms to share risk and
efficiently reallocate capital via financial markets. Our approach is
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1 Fernald et al. (2017), Gutiérrez and Philippon (2017b), and Alexander and Eberly (2018) find a decline in investment relative to trend since the early 2000s,
and in particular relative to measures of Tobin’s q. Laubach and Williams (2016) and Del Negro et al. (2018) document a secular decline in risk-free rates over
the past few decades, while Bianchi et al. (2020) find a concurrent decline in risk premia.

2 Corbae and Levine (2018) shows that the five largest U.S. banks held 47% of total U.S. bank assets in 2015; in the U.K., France, Germany, Italy, and Canada,
the range is from 71% to 84%. The OCC estimates that over 90% of the notional amount of interest-rate swaps is accounted for by four banks, while over 95%
of the CDS market is accounted for by three banks. In the corporate bond market, Li and Yu (2022) document that the median investment-grade bond is held by
only 47 investors, while Celik et al. (2020) show 25 large nonfinancial firms alone held $356 billion in corporate bonds in 2018. Ben-David et al. (2021) show
that the largest institutional investor oversaw 6.3% of total U.S. equity assets in 2016, while the top 10 investors managed 26.5%.

motivated by the empirical fact that many financial markets, including
those for corporate credit, have grown increasingly concentrated since
the 1980s, with a large share of capital now managed by a relatively
small number of large financial institutions and nonfinancial firms.2

While previous literature shows that such concentration can distort
asset prices and liquidity, our contribution is to study the feedback
to real investment using a tractable general equilibrium model of
strategic trading with rich heterogeneity in investment opportunities,
scale effects in preferences, and nonlinear price impact. Our key theo-
retical result is a two-way feedback mechanism between financial price
impact and capital misallocation, whereby price impact induces capital
misallocation by impairing risk sharing and misallocation increases
price impact by distorting the cross-sectional distribution of cash flows.
Based on this mechanism, we show that the distortions induced by
market power are more severe when investment opportunities are
highly dispersed across firms.
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Empirically, productivity dispersion has increased over the last two
decades (Cunningham et al., 2022). Calibrating our model to data
from 2002, we find that an exogenous increase in dispersion taken
from Cunningham et al. (2022) can rationalize a number of important
trends regarding asset prices, corporate discount rates, and investment
from 2002 to 2016. Financial market concentration can consequently
reduce the efficiency of capital allocation in a manner that aligns with
the empirical record.

Our framework is a general equilibrium model with complete finan-
cial markets and a finite number of large investors that represent large
firms. Investors allocate funds across risky individual-specific invest-
ment technologies, a safe storage opportunity with low returns (cash),
and financial securities. To characterize the theoretical mechanisms
in our model as transparently as possible, we focus on the case in
which investors trade the full set of Arrow securities. Importantly, we
prove that this is without loss of generality: equilibria are invariant
to the specific set of assets traded and the introduction of redundant
securities (such as stocks or bonds). Because firms in practice are known
to engage in hedging, we assign risk-averse preferences to them that
might reflect managerial risk aversion (e.g., Papanikolaou and Panousi,
2012), a desire to smooth cash flows, or large shareholder under-
diversification (e.g., Greenwald and Stiglitz, 1990).3 Because our model
s quite general, one can also interpret very unproductive firms as
inancial institutions that lend and borrow from other firms.

Financial positions are unrestricted: firms can buy or sell any num-
er of securities consistent with their budget constraints. Firms thus
se financial markets to manage risk and reallocate capital. This is
onsistent with practice. For example, in 2018 the Wall Street Journal
eported that Braeburn Capital, a wholly-owned subsidiary of Apple
nc., manages $244 billion in financial assets, representing 70% of
pple’s total book assets, $153 billion of which was invested in cor-
orate bonds, and that ‘‘Apple acts like a hedge fund by supporting
his portfolio with $115 billion in debt.’’4 Apple is far from unique:
orporate savings have risen in recent years, and large nonfinancial
orporations are now net lenders rather than borrowers (e.g., Chen
t al., 2017). Understanding how corporate trading affects capital
llocation is therefore an urgent matter.

The only friction in our model is imperfect competition in financial
arkets. In particular, we embed the canonical trade-off following Kyle

1989) that price impact deters trading and leads to unrealized gains
rom trade. Empirically, Koijen and Yogo (2019) and Bretscher et al.
2022) estimate that large investors have a high and persistent price
mpact in corporate equity and bond markets, respectively, suggesting
hat price impact is relevant for capital reallocation.

The main theoretical novelty introduced by endogenous investment
s that the level, riskiness, and cross-sectional distribution of cash
lows are determined in general equilibrium alongside price impact.
o achieve this in a tractable manner, we study Cournot–Walras equi-

ibrium with a competitive fringe composed of households and other
rice-taking investors, rather than an equilibrium in demand schedules
mong strategic investors only.5 This allows us to incorporate not only
cale effects and heterogeneity in investment opportunities, but also
onlinear price impact, all of which critically influence the feedback
etween investment and price impact.

Our analysis offers three main results. The first is a characterization
f an adverse feedback loop between price impact and capital misal-
ocation. Price impact gives rise to capital misallocation through the
stablished mechanism that it leads to unrealized gains from trade in

3 Amel-Zadeh et al. (2022) document that up to one-fifth of the largest U.S.
irms have a nonfinancial blockholder or insider as their largest shareholder.

4 See https://www.wsj.com/articles/apple-is-a-hedge-fund-that-makes-
hones-1535063375.

5 An online appendix to this paper provides a detailed comparison of the
2

wo equilibrium concepts.
financial markets. Our contribution is to show that the manner in which
price impact affects investment differs across the productivity distribu-
tion. High-productivity firms are net borrowers in financial markets.
For these firms, price impact hampers risk management and deters
borrowing, and so they invest less than they would in competitive
markets. By contrast, low-productivity firms are net suppliers of capital.
For these firms, price impact deters lending to other firms, and so they
invest more in their own investment opportunities than they would
under perfect competition. As such, price impact induces capital misal-
location. Moreover, because it also impedes risk sharing, investment in
risky capital eventually falls, and firms increasingly self-insure through
inefficient cash holdings. Capital misallocation then, in turn, exacer-
bates price impact in financial markets. This is because lower output
growth among firms that stems from inefficient investment forces them
to buy more/sell less assets to the competitive fringe. This lowers the
fringe’s consumption and, if the fringe has convex marginal utility, it
increases price impact. The amplification from this feedback loop is
ultimately determined by the degree of market concentration and the
cross-sectional distribution of agents’ productivity, which are the key
fundamentals in the economy. Ignoring feedback to investment thus
understates the consequences of market concentration for allocative
efficiency.

We next examine the general equilibrium relation between the
distribution of cash flow risk in the economy and aggregate economic
conditions. Our second main result is that financial market distortions
are sensitive to changes in fundamental gains from trade across mar-
ket participants, such as shocks to the cross-sectional dispersion of
investment opportunities. This is true even when such shocks would
be entirely neutral in competitive markets. For example, a mean-
preserving spread of diversifiable investment risk leads to higher price
impact, and thus a bigger decline in risky investment. An increase
in potential gains from trade therefore leads to fewer realized gains
from trade. Because dispersion in firm productivity has increased over
time (e.g., Cunningham et al., 2022), our analysis suggests a secular
increase in the distortions from market power despite the absence
of any direct changes in market concentration. Because dispersion is
counter-cyclical, our model also suggests that liquidity is pro-cyclical,
while reallocation is counter-cyclical. The former is consistent with
evidence from NÆs et al. (2011) for stock markets, and from Bao
et al. (2011) and Kargar et al. (2021) for bond markets; the latter is
documented by Eisfeldt and Ramipini (2006).

Our third main result pertains to asset pricing implications. In
particular, we provide conditions under which all asset prices rise,
the risk-free rate falls, and the market risk premium remains low as
markets become concentrated. Although low investment amidst low
costs of capital is typically seen as a puzzle, in our model they are a
joint outcome of endogenous distortions to financial market trading.
The relation between investment and asset prices is nonlinear. When
market concentration is low, shocks to market concentration reallocate
investment among firms and are primarily reflected in rising asset
prices. As market concentration increases, firms increasingly self-insure
using cash holdings. From this point on, incremental price adjustments
are largely driven by changes in the quantity of risk. An interesting
implication is that variation in market power may be difficult to detect
using reduced-form measures of illiquidity, such as the price elasticity,
because these also reflect changes in the quantity and distribution of
risk.

To illustrate the empirical relevance of these channels, we use our
model to interpret trends in corporate investment and financial returns
from 2002 to 2016. Gormsen and Huber (2022) document a striking
fact from this period, which is that corporations report large wedges
between their discount rates (or hurdle rates) and their estimates of
the relevant weighted average cost of capital in financial markets. In
particular, they show that the risk-free rate and the cost of capital
fall sharply over this period, while discount rates remain high and

stable. Since private and market-based valuations do not align in the

https://www.wsj.com/articles/apple-is-a-hedge-fund-that-makes-phones-1535063375
https://www.wsj.com/articles/apple-is-a-hedge-fund-that-makes-phones-1535063375
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presence of price impact, our model predicts precisely such a wedge
between hurdle rates and the cost of capital. Calibrating our model to
2002, we show that an exogenous increase in productivity dispersion
taken directly from Cunningham et al. (2022) can account for most
of the time variation in all three rates of return from 2002 to 2016
alongside anemic real investment. Adding a small increase in market
concentration, consistent with data from Kwon et al. (2023), leads to
an even better fit with the cost of capital, and predicts a decline in
investment and an increase in corporate cash holdings over the same
period, all of which are consistent with the data. While we leave a full
quantitative evaluation of our theory to future work, these findings
suggest that financial market concentration may have contributed to
the joint dynamics of real and financial variables over the last two
decades. They also highlight one of our key theoretical results, which
is that the distortions from financial market power are tightly linked to
the cross-sectional distribution of investment opportunities.

Our paper contributes to a growing literature at the intersection of
macroeconomics, financial markets, and industrial organization. Koijen
and Yogo (2019), Haddad et al. (2021), and Bretscher et al. (2022)
use a demand-system approach to analyze large investors behavior in
financial markets, emphasizing the role of quantities for estimating
the degree of price impact. However, they generally maintain the
assumption of price-taking behavior and ignore feedback to real in-
vestment. Other papers in this area focus on imperfect competition
among financial intermediaries (e.g., Drechsler et al., 2017; Egan et al.,
2017; Corbae and D’Erasmo, 2021; Hachem and Song, 2021), some
of which consider implications for investment. In contrast to these
papers, we focus on imperfect competition among large firms that
internalize their trades move asset prices. This allows us to link mar-
ket concentration directly to trends in firm investment behavior and
capital allocation. In this context, our focus on imperfect competition
in financial markets distinguishes our work from studies of market
concentration in product markets (e.g., Jones and Philippon, 2016;
Gutiérrez and Philippon, 2017a; Chen et al., 2020; Corhay et al., 2020;
Azar and Vives, 2021), which also lowers investment and risk-free
rates but often raises productivity and risk premia through procyclical
markups.

Our work is related to the literature on capital misallocation.6 Eis-
eldt and Ramipini (2006) provide evidence that misallocation is
ounter-cyclical while reallocation is procyclical. Carlstrom and Fuerst
1997) and Ai et al. (2020), for instance, relate misallocation to agency
rictions, while Kurlat (2013) and Bigio (2015) link capital misalloca-
ion to asymmetric information about the endogenous quality of capital
n secondary markets. We provide a novel channel through which
trategic considerations induce large firms and financial institutions to
oluntarily misallocate capital in illiquid financial markets, in which
he endogenous degree of illiquidity is increasing in the extent of
isallocation.

Our focus on risk management and capital allocation is related to
he literature on corporate participation in financial markets. Ferreira
2021) shows nonfinancial firms have substantial holdings of corporate
onds and how these cross-holdings can account for the equity pre-
ium in a quantitative model. Ma (2019) provides evidence that firms

ct as strategic cross-market arbitrageurs in their own debt and equity
ecurities. Closest to us are papers exploring how imperfect competition
n product markets interacts with hedging in competitive forward
arkets (e.g., Allaz, 1992; Allaz and Vila, 1993; Cox and Karam, 2022).

mperfect hedging in those settings arises from the rich interaction
etween current hedging and future competition in product markets.
e shut down product market competition to study the economic

onsequences of the strategic rationing of securities in illiquid financial
arkets, with associated feedback effects to real investment.

6 See Eisfeldt and Shi (2018) for a review of this literature.
3

Our paper contributes to the literature linking investment and asset
markets in the tradition of Cochrane (1991, 1996). Kogan and Pa-
panikolaou (2012) provide a review of this literature. One key insight
from this approach is that a return on firm assets has a tight connection
to the return on its equity. We show that this connection is modified in
particular ways when financial markets are illiquid, and find this has
strong implications for investment. More recently, Schmid et al. (2020)
show that heterogeneity in firm productivity leads to heterogeneity in
firm-specific risk premia that can explain a sizable part of the observed
dispersion in marginal products of capital. Our approach gives rise to
heterogeneity in marginal products of capital, as well as ex ante capital
misallocation and a disconnect between stock returns and investment
hurdle rates.

Our equilibrium concept is Cournot–Walras equilibrium in the tradi-
tion of Gabszewicz and Vial (1972). In this approach, strategic traders
choose price-contingent quantities taking into account the quantities
demanded by other strategic agents and the residual demand curve of
the competitive fringe. A closely-related approach based on Kyle (1989)
instead studies equilibrium in demand schedules. Rostek and Yoon
(2020) provide a review of this literature, and papers such as Malamud
and Rostek (2017) discuss how price impact hampers risk sharing given
an exogenous endowment of securities or other endowments. Although
this concept allows for a richer analysis of strategic interactions among
large traders than Cournot–Walras, mainly by permitting agents to
submit demand schedules, it typically requires strong assumptions on
preferences and payoffs (such as the canonical CARA-normal setting)
to preserve tractability. One contribution of our paper relative to
this literature is that we introduce a real investment decision, which
means that the distribution of cash flows (and therefore trading needs)
are endogenously determined in general equilibrium alongside price
impact. We provide a more detailed comparison of the two equilibrium
concepts in the Online Appendix.

The paper is organized as follows. We describe the model in Sec-
tion 2. Section 3 contains the theoretical analysis. In Section 4, we
interpret recent trends in corporate investment relative to market rates
of return through the lens of our model. Section 5 contains additional
empirical predictions for understanding corporate hedging behavior
and asset returns in a production-based framework. We conclude in
Section 6. Proofs are in Appendix A. Appendix B contains a description
of our data.

2. Model

In this section, we describe our model. There is a single good (the
numeraire) and two dates, 𝑡 = 1, 2. At date 1, agents make production
and savings decisions under uncertainty because the state of the world
at date 2, 𝑧, is unknown. As a consequence, asset prices and production
plans are jointly determined in equilibrium at 𝑡 = 1. The set of possible
states at date 2 is  ≡ {1, 2,… , 𝑍}, and the probability of state 𝑧 ∈ 
is 𝜋(𝑧) ∈ (0, 1) from the perspective of all agents. At 𝑡 = 2, payoffs are
realized and all agents consume.

There are two classes of agents: a discrete number of strategic agents
who are large relative to the economy and internalize their price
impact in financial markets, and a unit continuum of atomistic agents
called the competitive fringe who take prices as given. Strategic agents
epresent large firms or large financial institutions that lend to firms.
here are 𝑁 types of strategic agents, indexed by 𝑖 ∈ {1, 2… , 𝑁}, where

a type indexes the production technology available to the agent. There
are 1∕𝜇 agents of every type, each of which has mass 𝜇 ∈ (0, 1]. The
total number of strategic agents is thus 𝑁∕𝜇 and the total mass is 𝑁 .

Strategic agent 𝑗 of type 𝑖 receives an initial endowment 𝜇𝑒 at
date 1 and has access to a type-specific production technology that
transforms 𝜇𝑘𝑗,𝑖 units of the numeraire at date 1 into 𝜇𝑦𝑖(𝑧)𝑘𝑗,𝑖 units
of the numeraire in state 𝑧 at date 2. Since the total endowment owned
by agents of type 𝑖 is 𝑒, parameter 𝜇 also determines the fraction of total
initial wealth an agent of type 𝑖 has relative to all agents of type 𝑖. That
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is, 𝜇 measures relative size. We use 𝜇 to vary the degree of market
concentration without affecting the aggregate production possibility
frontier. In particular, holding all other parameters fixed, the limit
𝜇 → 0 nests the benchmark of perfect competition.

All endowments and technological payoffs are bounded, and pro-
duction may be subject to agent-specific and aggregate risk. We place
no other restrictions on {𝑦𝑖(𝑧)}𝑁𝑖=1 other than that total risky investment

𝑖,𝑗 𝑘𝑖,𝑗 is lower under financial autarky (i.e., when no financial trading
s permitted) than under perfect competition. This is a restriction on
roduction risk that ensures risk sharing is an important determinant
f investment.

ssumption 1 (Low Investment in Autarky). Parameters are such that
aggregate risky investment ∑𝑖,𝑗 𝑘𝑖,𝑗 is higher under perfect competition
than when no financial trading is permitted.

Strategic agents can also invest in a risk-free storage technology
that transforms 𝜇𝑠𝑗,𝑖 ≥ 0 units of the numeraire into 𝑅𝜇𝑠𝑗,𝑖 units at
date 2. Storage represents a safe alternative, such as cash, that is less
productive on average, i.e., 𝐸[𝑦𝑖(𝑧)] > 𝑅 for all 𝑖.

Our setting allows us to capture heterogeneity across market par-
ticipants. For example, an institutional investor may only have access
to real investments that are nearly equivalent to cash (𝐸[𝑦𝑖(𝑧)] ≈ 𝑅),
while a technology firm may be highly productive.

Strategic agents have preferences over consumption at both dates
that are represented by the utility index 𝑢(𝑐). Unless otherwise stated,
𝑢(𝑐) is homothetic, strictly increasing, strictly concave, and twice con-
tinuously differentiable. For simplicity, we do not impose
non-negativity of consumption, but our results extend to this case.
Assuming homothetic preferences allows us to highlight how firm size
affects investment purely through equilibrium interactions rather than
by directly affecting preferences. Risk aversion captures the notion
that even large firms can exhibit risk aversion under a variety of
frictions (e.g., Greenwald and Stiglitz, 1990; Papanikolaou and Panousi,
2012).7 Section 2.2 provides a further discussion of these assumptions.

In addition to the set of strategic agents, there is a non-strategic
competitive fringe with mass 𝑚𝑓 composed of price-taking agents that
represent households or other competitive traders. In contrast to strate-
gic agents, the competitive fringe has linear preferences over consump-
tion at date 1, and is risk-averse over consumption at date 2 with
utility function 𝑢𝑓 (𝑐). We assume 𝑢𝑓 (𝑐) is strictly increasing, strictly
concave, and twice continuously differentiable. The competitive fringe
receives endowment of the numeraire 𝑒 at date 1 and 𝑒2,𝑓 (𝑧) at date
2 in state 𝑧. The fringe has no production technology, reflecting its
role as households and retail investors in financial markets. Quasi-
linear preferences permit a particularly tractable demand system, but
the main economic forces are unchanged if the fringe is risk-averse over
date 1 consumption as well.

Strategic agents and the competitive fringe trade in financial mar-
kets at date 1. The set of available assets is the complete set of Arrow
securities. That is, there are || securities, and security 𝑧 pays one unit
of the numeraire at date 2 in state 𝑧 but zero otherwise. This ensures
that markets are complete from a spanning perspective. We discuss
redundant securities in Section 3.1.

Let 𝑎𝑗,𝑖(𝑧) denote the asset holdings of the state 𝑧 security by agent
𝑗 of type 𝑖, where 𝑎𝑗,𝑖(𝑧) < 0 denotes a sale. Aggregate positions within
and across types are then given by

𝑎𝑖(𝑧) ≡
1∕𝜇
∑

𝑗=1
𝜇𝑎𝑗,𝑖(𝑧) and 𝐴(𝑧) ≡

𝑁
∑

𝑖=1
𝑎𝑖(𝑧).

7 Asplund (2002) and De Giovanni and Iakimova (2022) also model strate-
ic, risk-averse firms but focus on product market competition rather than
mperfect competition in financial markets. Papanikolaou and Panousi (2012)
ot only provide a theory of firm risk aversion based on manager preferences,
ut also provide evidence of this channel in the set of public firms in
4

ompustat.
The competitive fringe’s position in security 𝑧 is 𝑎𝑓 (𝑧). Market clearing
onditions are:

(𝑧) + 𝑚𝑓 𝑎𝑓 (𝑧) = 0 for all 𝑧. (1)

e define 𝐀 to be the (𝑁+1)×𝑍 matrix of asset holdings for all agents
nd all assets, with entries 𝑎𝑓 (𝑧) and 𝑎𝑖(𝑧) and for all 𝑖 = 1, 2…𝑁 . The
arket-clearing price of asset 𝑧 given 𝐀 is then denoted by 𝑄(𝐀, 𝑧).

.1. Decision problems and equilibrium concept

Our equilibrium concept is Cournot–Walras equilibrium in the tradi-
ion of Gabszewicz and Vial (1972). In this approach, strategic traders
lace price-contingent orders taking into account the quantities de-
anded by other strategic agents and the residual demand curve of the

ompetitive fringe. As discussed at the outset, this concept simplifies
trategic interactions among traders relative to the equilibrium concept
n Kyle (1989), but it allows us to incorporate rich heterogeneity
n agent productivity, asymmetric equilibria, and nonlinear residual
emand in a tractable manner, all of which are important for our
nsight that there is a two-way feedback between price impact and real
isallocation. The limited risk-bearing capacity of the fringe can also

apture that there are few traders who quickly reallocate capital in
esponse to shocks.

A strategy 𝜎𝑓 for the competitive fringe consists of asset positions
nd consumption, 𝜎𝑓 = {{𝑎𝑓 (𝑧)}𝑧∈, 𝑐1,𝑓 , 𝑐2,𝑓 }. Since the competitive
ringe takes prices as given, its perceived pricing function in each state
s a constant, �̃�𝑓 (𝐀, 𝑧) = 𝑞(𝑧), for some function 𝑞(𝑧). The fringe’s
ecision problem is:

𝑓 = max
𝜎𝑓

𝑐1𝑓 +
∑

𝑧
𝜋(𝑧)𝑢𝑓 (𝑐2,𝑓 (𝑧)) (2)

s.t. 𝑐1𝑓 = 𝑒 −
∑

𝑧
𝑞𝑓 (𝑧)𝑎𝑓 (𝑧),

𝑐2,𝑓 (𝑧) = 𝑒2,𝑓 (𝑧) + 𝑎𝑓 (𝑧).

A strategy 𝜎𝑗,𝑖 for strategic agent 𝑗 of type 𝑖 consists of asset posi-
ions, investments, and consumption, 𝜎𝑗,𝑖 =
{𝑎𝑗,𝑖(𝑧)}𝑧∈, 𝑠𝑗,𝑖, 𝑘𝑗,𝑖, 𝑐1,𝑗,𝑖, 𝑐2,𝑗,𝑖 (𝑧)}. When deciding on an optimal strat-
gy, strategic agents must form beliefs over the residual inverse demand
unction that maps aggregate asset portfolios into prices, given the
sset positions of all other agents as determined by the vector of other
gents’ strategies 𝜎−𝑗,𝑖. We denote the perceived pricing function used
y agent 𝑗 of type 𝑖 to forecast her influence on the price of security 𝑧
y �̃�𝑖,𝑗 (𝐀, 𝑧). The associated decision problem is:

𝑗,𝑖 = max
𝜎𝑗,𝑖

𝑢
(

𝑐1,𝑗,𝑖
)

+
∑

𝑧∈
𝜋 (𝑧) 𝑢

(

𝑐2,𝑗,𝑖 (𝑧)
)

(3)

s.t. 𝜇𝑐1,𝑗,𝑖 = 𝜇𝑒 − 𝜇𝑘𝑗,𝑖 − 𝜇𝑠𝑗,𝑖 − 𝜇
∑

𝑧∈
�̃�𝑖,𝑗 (𝐀, 𝑧)𝑎𝑗,𝑖 (𝑧) ,

𝜇𝑐2,𝑗,𝑖 (𝑧) = 𝜇𝑦𝑖 (𝑧) 𝑘𝑗,𝑖 + 𝜇𝑎𝑗,𝑖 (𝑧) + 𝜇𝑅𝑠𝑗,𝑖.

e define preferences and controls in this manner, recognizing that
he consumption of strategic agent 𝑗 of type 𝑖 is actually 𝜇𝑐1,𝑗,𝑖 and
𝑐2,𝑗,𝑖 (𝑧) at dates 1 and 2, respectively, and similarly with optimal asset
oldings and investment. Given homothetic utility, however, optimal
olicies will be invariant to 𝜇. As such, we will also focus on equilibria
n which all agents within a type follow symmetric strategies.

efinition 1. A Cournot–Walras equilibrium consists of a strategy 𝜎𝑗,𝑖
or each strategic agent, a strategy 𝜎𝑓 for the competitive fringe, and
ricing functions 𝑄(𝐀, 𝑧) for all 𝑧 ∈  such that:

1. Fringe optimization: 𝜎𝑓 solves decision problem (2) given
{𝑞𝑓 (𝑧)}𝑧∈.

2. Strategic agent optimization: For each agent 𝑗 of type 𝑖, 𝜎𝑗,𝑖
solves decision problem (3) given (𝑖) other agents’ strategies

̃
{𝜎−𝑗,𝑖, 𝜎𝑓 } and perceived pricing functions {𝑄𝑗,𝑖(𝐀, 𝑧)}𝑧∈.
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3. Market-clearing: Each market clears with zero excess demand
according to (1).

4. Consistency: All agents have rational expectations, which re-
quires that for strategic agents �̃�𝑗,𝑖(𝐀, 𝑧) = 𝑄(𝐀, 𝑧) for all 𝑖, 𝑗,
and 𝑧.

Similar to product market models of Cournot competition, strategic
interaction in financial markets is intermediated by a group of price-
taking agents (i.e., the competitive fringe). While a strategic agent takes
the asset positions of other strategic agents as given, he does internalize
how his own demand impacts equilibrium asset prices by altering the
marginal utility of the fringe. Through this channel, how one strategic
agent type trades affects how another strategic agent trades by altering
the price and price impact that agent faces. When he increases his de-
mand, asset prices and price impact increase. This reduces the demand
of other strategic agents and worsens strategic distortions. Although the
utility function and size (i.e., 𝑚𝑓 ) of the competitive fringe does affect
the shape of the equilibrium price function, it does not change the
manner in which strategic agents fundamentally impact each other’s
behavior.

2.2. Model discussion

We now briefly discuss several of our modeling assumptions. First,
we model the objective of strategic agents as expected utility maximiza-
tion. This is equivalent to the more standard approach of shareholder
value maximization for the case of a single large private shareholder,
and can be easily extended to the case of heterogeneous large share-
holders with fixed holdings across agents (i.e., common ownership)
provided we specify how voting rights are allocated. A subtlety of our
analysis is that although financial markets are complete, such large
shareholders would not necessarily agree on production plans because
the strategic agents in which they invest do not share risks efficiently
in equilibrium. This renders the problem similar to those studied in
the intractable ‘‘stock market’’ equilibria of Radner (1974) and Dréze
(1974).8 We opt for this parsimonious objective to avoid these issues
and focus on the unique implications of our channel of how strategic
trading in financial markets interacts with firm behavior.

Second, we consider a model with only two dates. One might
wonder whether with multiple periods that imperfect risk sharing might
be irrelevant for production decisions because agents can self-insure
with cash or credit lines in lieu of trading in financial markets (e.g.,
Bolton et al., 2011). This is not the case for two reasons. First, the
return to a risk-free portfolio in financial markets is bounded from
below by that on storage 𝑅 and would be from above by the competitive
ending rate on any private credit line. As such, financial market
articipation is preferable to self-insurance unless market concentration
istortions are sufficiently severe, which our model captures. Second,
irms under-insure regardless of initial wealth. As shown in Neuhann
nd Sockin (2023) in the context of forward-looking investors, such
nvestors become even more exposed to their own income shocks over
ime, amplifying their strategic under-diversification. The distortions
e characterize will therefore remain relevant in a dynamic setting.

. Equilibrium

We now characterize the equilibrium. In models of strategic inter-
ction, a key object is the equilibrium functional that determines both

8 Issues of the objective of the firm with heterogeneous shareholders are not
pecific to our mechanism of imperfect competition in financial markets, and
re beyond the scope of our paper. How a firm chooses its marginal valuation
f production across states (i.e., its shareholder-aggregated state prices) is
rrelevant to our insight that the firm will choose its financial asset positions
5

o put a wedge between these private valuations and market prices. r
prices and price impact. We begin by deriving this object in closed
form. This allows us to prove the existence of an equilibrium and dis-
cuss the distortions induced by imperfect financial market competition
in a model with wealth effects and production.

3.1. Equilibrium demand system and price impact

We derive the equilibrium pricing functional using the decision
problem of the competitive fringe. Since the competitive fringe takes
prices as given, the first-order conditions for portfolio optimality re-
quire that asset prices are equal to the fringe’s marginal utility. This
delivers an analytic solution for both the pricing functional and price
impact, which we summarize in Proposition 1. This demand system
has many useful properties. In particular, there is no arbitrage and the
equilibrium is invariant to the introduction of redundant securities.

Proposition 1 (Demand System and Law of One Price). The law of one
price holds. All available assets are traded, but investment, consumption,
and prices are invariant to the introduction of redundant assets. Arrow
security prices are given by:

𝑄(𝐀, 𝑧) = 𝑞 (𝑧) ≡ 𝜋(𝑧)𝑢′𝑓
(

𝑐2,𝑓 (𝑧)
)

, where 𝑐2,𝑓 (𝑧) = 𝑒2,𝑓 (𝑧) −
1
𝑚𝑓

𝐴(𝑧).

(4)

Price impact of strategic agent 𝑖 is symmetric across agents and satisfies:

𝜕�̃�𝑗,𝑖(𝐀, 𝑧)
𝜕𝑎𝑖(𝑧)

=
𝜇
𝑚𝑓

𝑞′(𝑧),

here 𝑞′(𝑧) ≡ 𝜕𝑞(𝑧)
𝜕𝐴(𝑧)

= −𝜋(𝑧)𝑢′′𝑓
(

𝑐2,𝑓 (𝑧)
)

> 0. (5)

Because the competitive fringe takes price as given, its first-order
condition yields a residual demand curve for every Arrow security.9
Strategic agents optimize against this residual demand curve, taking
as given the quantities demanded by other strategic agents. Large
agents’ portfolios thus pin down the level of fringe consumption, while
price impact reflects the degree to which a marginal change in quan-
tities affects the competitive fringe’s marginal utility at that level of
consumption. Since marginal utility is nonlinear under standard pref-
erences, strategic interactions among large traders influence both the
level and slope of prices, giving rise to a price impact function. This
extends the central insight from the literature following Kyle (1989) to
an environment with endogenous cash flows, rich heterogeneity, wealth
effects, and non-linear price impact.

Invariance with respect to redundant securities arises because any
combination of assets that delivers the same consumption process to
the competitive fringe induces the same prices and price impact. The
role of 𝜇 is to scale strategic agents’ influence on the consumption
of the competitive fringe. When 𝜇 → 0, this influence is negligible
and the price impact disappears. We are then back to the competitive
benchmark. Finally, the price impact function is unique because it is
fully pinned down by the competitive fringe’s marginal utility. This
nullifies any strategic uncertainty that would give rise to equilibria mul-
tiplicity through self-fulfilling coordination on different price impact
functions.10

That price impact depends on the fringe’s consumption level also
creates a link between aggregate output and strategic considerations. In
particular, output affects price impact as long as marginal utility varies
with consumption. This leads to one direction of the feedback loop
between real investment and financial markets, which is that declines in

9 Quasi-linearity ensures a state-specific residual demand curve but plays
o substantive role otherwise.
10 (Kyle, 1989) shows in the special case of the CARA-normal setting that the
nique residual demand curve is linear. More generally, there may be many
esidual demand curves that can support an equilibrium.
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output due to misallocation or productivity shocks can boost the price
impact.

Corollary 1 (Real Allocations and Price Impact). Define aggregate output in
state 𝑧 to be 𝑌 (𝑧) = ∑𝑁

𝑖=1 𝑦𝑖(𝑧)𝑘𝑖+𝑅𝑠𝑖+𝑚𝑓 𝑒𝑓 (𝑧), and let fringe preferences
satisfy convex marginal utility (such as CRRA). Holding investment choices
fixed, a decline in aggregate output in state 𝑧 because of lower productivity
{𝑦𝑖 (𝑧)}𝑁𝑖=1 and/or less risky investment 𝑘𝑖 leads to a higher price impact in
state 𝑧.

Under convex marginal utility, price impact co-moves with the
fringe’s marginal utility. In complete markets, a decline in output
reduces consumption and increases marginal utility for all investors.
Hence productivity shocks or misallocation can raise price impact.

3.2. Optimal strategic portfolios and investment wedges

We next study the optimal policies of strategic agents, taking as
given the demand system derived above. Without loss of generality, we
assume all strategic agents of type 𝑖 behave symmetrically. We define
the state price 𝛬𝑖(𝑧) for state 𝑧 and an agent of type 𝑖 as the ratio of
expected marginal utility in state 𝑧 and marginal utility at date 1:

𝛬𝑖 (𝑧) ≡
𝜋 (𝑧) 𝑢′

(

𝑐2,𝑖 (𝑧)
)

𝑢′
(

𝑐1,𝑖
) . (6)

e can then characterize optimal portfolios and investment policies In
emma 1.

emma 1 (Equilibrium Existence and Optimal Strategies). There exists an
quilibrium in which the optimal policies of strategic agents of type 𝑖 for
𝑖 (𝑧), 𝑘𝑖, and 𝑠𝑖, are homogeneous of degree 1 in 𝑒 conditional on asset
rices 𝑞 (𝑧). These policies satisfy the following optimality conditions:

𝑖(𝑧) ∶ 𝛬𝑖 (𝑧) = 𝑞 (𝑧) +
𝜇
𝑚𝑓

𝑞′(𝑧)𝑎𝑖 (𝑧) , (7)

𝑘𝑖 ∶
∑

𝑧∈
𝛬𝑖 (𝑧) 𝑦𝑖(𝑧) ≤ 1 (and = if 𝑘𝑖 > 0 ), (8)

𝑠𝑖 ∶
∑

𝑧∈
𝛬𝑖 (𝑧)𝑅 ≤ 1, (and = if 𝑠𝑖 > 0). (9)

Conditional on state prices, the optimality conditions for risky
investment and storage are standard: agents equate the state price-
weighted expected return to the marginal cost of investing. Moreover,
agents always invest some amount of capital in risky capital because it
has higher returns than storage on average. In equilibrium, however,
investment policies are distorted because price impact distorts state
prices.

This can be seen in the first-order conditions for optimal portfolios.
Rather than aligning state prices with market prices, optimal portfolios
are shaped by endogenous wedges that appear because agents vol-
untarily misalign their state prices to tilt asset prices in their favor.
Since buyers of a particular Arrow security reduce demand to lower
prices, and sellers of the same Arrow security reduce supply to raise
prices, state-specific wedges 𝑤𝑖(𝑧) are negative for sellers and positive
for buyers,

𝑤𝑖(𝑧) ≡
𝜇
𝑚𝑓

𝑞′(𝑧)𝑎𝑖(𝑧). (10)

One component of the investment wedge is the degree of price
mpact: if price impact increases, so must the wedge. This creates the
pposite direction of the feedback loop from Corollary 1, which shows
hat changes in allocative efficiency can increase price impact. (For
implicity, we engineer an increase in price impact simply by varying
he endowment of the competitive fringe. But we could also change
ringe preferences, or the degree of market concentration.)

orollary 2 (Price Impact and Investment Wedges). Suppose the competi-
ive fringe has convex marginal utility and we reduce its endowment in state
, 𝑒𝑓 (𝑧). Then, both prices 𝑞(𝑧) and price impact 𝑞′(𝑧) (weakly) increase.
As such, investment wedges must increase.
6

The other component of the wedge is the trading volume 𝑎𝑖(𝑧),
hich determines the inframarginal benefit of a price change. This
echanism relates the market concentration friction to fundamental
eterminant of trading volumes in financial markets.

One particularly important determinant of trading needs is the
egree of diversifiable risk. Under perfect competition, any increase in
diosyncratic productivity dispersion (that does not alter the production
ossibilities frontier) is accommodated through higher trading volumes,
nd does not affect real allocations or prices.11 However, with strategic
gents, an increase in gains from trade also increases incentives for
ent-seeking behavior, and agents respond by distorting their portfolios
ore and realizing fewer gains from trading. To isolate the impact on

ains from trade independently from changes in investment, we state
his result for a particular class of mean-preserving spreads to strategic
gents’ productivity processes holding fixed their investment decisions.

efinition 2. Holding fixed the investment decisions of strategic
gents, an output-preserving spread is a mean-preserving spread of every
ype 𝑖’s productivity process 𝑦𝑖 (𝑧) that leaves unchanged total output
𝑁
𝑖=1 𝑦𝑖 (𝑧) in every state 𝑧 ∈ .

Such mean-preserving spreads are entirely neutral for real alloca-
tions and asset prices under perfect competition. This is because in
competitive financial markets, equilibrium allocations are split evenly
across strategic agents based on the aggregate output in each state.
However, when markets are concentrated, they alter equilibrium con-
sumption allocations by hampering the ability of strategic agents to
share risks in financial markets. We summarize this observation in the
following corollary.

Corollary 3 (Dispersion and Distortions). Fixing an investment policy, state
price dispersion and financial market wedges increase upon an output-
preserving spread of the productivity process if and only if investors have
price impact.

A testable implication of this result is that even absent changes in
market concentration, the equilibrium consequences of market concen-
tration can become more severe if there is increasing need to share risk
and reallocate capital. Empirical evidence indicates that idiosyncratic
productivity dispersion has indeed been increasing over the past two
decades (Cunningham et al., 2022). In Section 4, we exploit this fact
to show that our model can rationalize trends in corporate invest-
ment relying only on an empirically-realistic exogenous increase in
productivity dispersion.

Productivity dispersion is also known to increase during recessions.
According to our model, both strategic distortions and the benefits from
trading are consequently counter-cyclical. Eisfeldt and Ramipini (2006)
document that while capital misallocation is pro-cyclical, the benefits
of reallocation are counter-cyclical.

3.2.1. The level of investment
We have shown that price impact distorts investment policies. We

now ask whether this induces over- or under-investment at the firm-
level and in the aggregate. A useful feature of our complete-markets
setting is that the decision to buy or sell a particular security can
be directly linked to an agent’s production technology, with an agent
selling (buying) if she has high (low) income in a particular state of the
world. Financial market distortions thus lead to a specific form of state
price distortions: relative to the competitive benchmark, the marginal
value of income goes down (up) in states with high (low) output.

11 That it does not alter the production possibilities frontier is to ensure that
the previous production plans are still feasible under the new productivity
distribution.
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Lemma 2 (State Price Expansion). Fixing investment decisions, price impact
leads to a negative wedge when the agent is a seller and a positive wedge
when the agent is a buyer. Price impact therefore leads to a decline in an
agent’s state prices in all states where the agent has above average output,
and an increase in all states where the agent has below average output.

The overall effect of price impact on optimal investment decisions is
then apparent if we use the first-order conditions for optimal trading to
substitute state prices. Optimality conditions for risky investment and
storage, respectively, can be expressed as:
∑

𝑧
𝑞(𝑧)𝑦𝑖(𝑧) +

∑

𝑧
𝑤𝑖(𝑧)𝑦𝑖(𝑧) = 1 and

∑

𝑧
𝑞(𝑧)𝑅 +

∑

𝑧
𝑤𝑖(𝑧)𝑅 ≤ 1.

(11)

Similar to standard 𝑞-theory, an agent optimally invests to the point
where the marginal private benefit is equal to the marginal cost (which
is equal to one here.) However, price impact forces a wedge in valua-
tions that is sensitive to asset prices and price impact. Agents for whom
the net wedge ∑

𝑧 𝑤𝑖(𝑧)𝑦𝑖(𝑧) is negative under-invest based on market
prices 𝑞(𝑧) (i.e., ∑𝑧 𝑞(𝑧)𝑦𝑖(𝑧) > 1) because they remain too exposed to
their own production risk. Similarly, agents for whom the net wedge is
positive over-invest because they buy too few securities from financial
markets.

This further implies that market prices are not appropriate measures
of private investment incentives. In particular, there is a disconnect
between firm investment hurdle rates and the return to capital mea-
sured at market prices. Such wedges are observed in practice (e.g.,
Jagannathan et al., 2015). Most recently, Gormsen and Huber (2022)
provide evidence of a wedge in discount rates and financial market re-
turns that acts as a drag on investment, consistent with the ‘‘factorless’’
income documented in Karabarbounis and Neiman (2018). This can
explain not only low investment by a firm with a high Tobin’s q, but
also an increasing share of its profits accruing to shareholders. Gormsen
and Huber (2022) further show that wedges are systematically larger
when risk-free rates are lower. We will show that this also what our
model predicts. In Section 4, we use moments from Gormsen and Huber
(2022) to discipline an empirical exercise using our model.

3.3. Equilibrium investment and misallocation

We next map wedges in the optimality conditions for investment
into implications for the equilibrium allocation of capital in the cross-
section of investment opportunities. In particular, we show that highly
productive agents tend to under-invest when financial markets are
concentrated, while unproductive agents tend to over-invest. These
results depend critically on the fact that our model permits rich cross-
sectional heterogeneity in investment opportunities, which is a novel
contribution for models with price impact.

Formally, we identify high- and low-productivity agents by compar-
ing their privately-optimal investment scales under two benchmarks:
the efficient benchmark with perfect competition (zero price impact),
and financial autarky (no financial markets). A high-productivity agent
is one who invests more in the competitive benchmark than in autarky;
a low-productivity agent is one who invests relatively more under
autarky. Underlying this idea is the notion that the production tech-
nologies of agents who invest less under perfect competition than under
autarky must be dominated by those of other agents.

Proposition 2 shows that market concentration distorts an agent’s
investment policies in a manner that depends on individual productiv-
ity levels. A high-productivity agent chooses a lower scale of production
than under perfect competition. This is because it would be efficient
for her to borrow from and share risks with low-productivity agents,
but price impact hampers the realization of these gains from trade. By
contrast, a low-productivity agent chooses a higher scale of production
7

than under perfect competition as price impact deters the reallocation
of capital to the more productive agents. Given imperfect risk shar-
ing, agents also increasingly rely on inefficient storage to self insure.
Through these mechanisms, market concentration lowers aggregate
investment and induces misallocation.

Proposition 2 (Equilibrium Investment). As a result of market concentra-
tion 𝜇:

(i) the optimal scale of risky production for high-productivity firms is
lower,

(ii) the optimal scale of risky production for low-productivity firms is
higher,

(iii) average productivity is lower and, for 𝜇 sufficiently large, aggregate
risky investment falls,

(iv) corporate cash holdings (investment in safe storage) are (weakly)
higher.

Statement (iii) shows that aggregate risky investment need not be
monotonically decreasing in the degree of market concentration 𝜇. This
is because, for some values of 𝜇, the decline in investment by high-
productivity firms may be outweighed by the increase in investment
by low-productivity firms. The intuition is as follows. Since high-
productivity firms borrow capital from other firms, they reduce their
investment in response to higher price impact. Because this makes it
more expensive for low-productivity firms to buy future consumption
in financial markets, they respond by investing more in their own
technology. Since low-productivity firms need to invest more capital to
achieve a given level of future income, this mechanism can lead to an
increase in aggregate investment. This effect, however, is necessarily lo-
cal because total investment eventually declines to its autarky value as
price impact rises. Due to productivity differences, average productivity
always falls even if total investment may be higher at intermediate
values of 𝜇.

3.4. Asset pricing implications

Since financial market distortions are central to our theory of invest-
ment, it is important to assess the model’s asset pricing implications.
Define the cross-sectional average of a variable 𝑥𝑖 to be 𝐸𝑖[𝑥𝑖] ≡
1
𝑁

∑

𝑖 𝑥𝑖. Averaging over the optimality condition for portfolio choices
(7) yields the following expression for the price of the Arrow security
for state 𝑧:

(𝑧) = 𝐸𝑖[𝛬𝑖(𝑧)] − 𝑚𝑘𝑡 (𝑧) , (12)

here 𝑚𝑘𝑡 (𝑧) = 𝑞′(𝑧) 𝜇
𝑚𝑓

𝐴(𝑧)
𝑁 is the quantity-weighted average price

impact in state 𝑧. The state price- and market-implied risk-free rates,
𝑟∗𝑓 and 𝑟𝑚𝑓 , are:

𝑟∗𝑓 =

[

∑

𝑧∈
𝐸𝑖 [𝛬𝑖 (𝑧)

]

]−1

and 𝑟𝑚𝑓 =
[

∑

𝑧∈
𝑞(𝑧)

]−1
.

The market risk premium is the expected excess return on the tradeable
portfolio of all risky production:

𝑅𝑃𝑚𝑘𝑡 =
∑

𝑧 𝜋(𝑧)𝐸𝑖 [𝑦𝑖 (𝑧) 𝑘𝑖
]

∑

𝑧∈ 𝑞 (𝑧)𝐸𝑖
[

𝑦𝑖 (𝑧) 𝑘𝑖
] − 𝑟𝑚𝑓 . (13)

Lemma 3 shows that the first term of the market risk premium can
be decomposed into two pieces. The numerator of the right-hand side
of (13) is the classical risk premium based on the covariance of the
market portfolio with the state prices of the competitive fringe. The
denominator represents the total distortion to the marginal value of
capital from strategic trading with price impact. Firms that under-invest
due to strategic distortions have an inflated Tobin’s q, while those that
over-invest have a depressed Tobin’s q. This distorts the cost of the
market portfolio and consequently the market risk premium.
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Lemma 3 (Market Risk Premium). The market risk premium, 𝑅𝑃𝑚𝑘𝑡,
atisfies:

𝑃𝑚𝑘𝑡 = −
𝐶𝑜𝑣

(

𝑞(𝑧)
∑

𝑧∈ 𝑞(𝑧) ,
∑𝑁

𝑖=1 𝑦𝑖 (𝑧) 𝑘𝑖
)

∑𝑁
𝑖=1 𝑘𝑖 − 𝜇

∑

𝑧∈ 𝑞′ (𝑧)
∑𝑁

𝑖=1 𝑎𝑖 (𝑧) 𝑦𝑖 (𝑧) 𝑘𝑖
. (14)

Having defined key asset pricing objects, we now turn to the effects
of an increase in market concentration. To isolate the pure effects
of financial market concentration on rates of return, in the following
we assume the competitive fringe is passive in the counterfactual
competitive equilibrium, by which we mean that the fringe holds a
non-negative position in every asset if 𝜇 = 0. (There always exists a
fringe endowment process such that this condition is satisfied.) This
assumption is not necessary but convenient because it ensures that price
differences between the market and the competitive counterfactual
equilibrium are primarily governed by the interactions of strategic
agents. It also rules out the case of a quasi-monopsony or monopoly
in which all strategic agents trade in the same direction.

Assumption 2 (Passive Fringe). {𝑒2,𝑓 (𝑧)}𝑧∈ is such that 𝑎𝑓 (𝑧) ≥ 0 when
𝜇 = 0.

Our key asset pricing result in this section is a sharp characterization
of the comparative statics of returns in the benchmark case where
there is small number of large investors who are relatively similar ex-
ante (but not ex-post). Analogous results obtain in the ‘‘strategic limit’’
where the mass of the fringe is small. This is the case we exploit in our
numerical analysis below.

Definition 3 (Type-Symmetric). Two agent types are type-symmetric if
they have ex-ante symmetric income risks so that they face identical
decision problems.

Proposition 3 then establishes that market concentration raises all
asset prices, depresses the risk-free rate, and simultaneously lowers the
market risk premium.

Proposition 3 (Asset Prices and Risk-free Rate). Suppose all strategic
agents types are symmetric and that Assumption 2 holds. Then, as a result
of market concentration 𝜇:

(i) If agents do not invest in storage, asset prices are higher state-by-
state than in the competitive equilibrium. If agents employ storage,
then some states may instead have lower prices.

(ii) The risk-free rates, (state-price implied) 𝑟∗𝑓 and (market-implied) 𝑟
𝑚
𝑓 ,

are lower than in the competitive equilibrium and bounded below by
the rate of return on storage 𝑅.

(iii) The market risk premium is lower than in the competitive equilibrium.

Market concentration lowers the risk-free rate primarily because
imperfect risk sharing raises the value of insurance. It lowers the market
risk premium through both a quantity and a price of risk channel. The
quantity of risk channel is straightforward. When investment misallo-
cation is severe, such as when storage is employed, then there is less
total risky production in the economy and the quantity of risk falls.
This lowers the market risk premium. The price channel is more subtle.
For fixed investment policies, market concentration distorts trading in
financial markets, and if the distortions to state prices favors sellers,
this inflates security prices and reduces their correlation with total
production. Both effects reduce the price of risk.

The most interesting implication is that market concentration can
lead to a joint decline in investment, risk-free rates, and the risk
premium, a trend that has been observed in the U.S. over the past few
decades. This combination is a priori surprising because low rates of
return should lower costs of capital, leading to an increase in risky
investment. In our setting, however, all three effects are symptoms of
the same underlying cause, which is that strategic distortions in asset
markets lead to misallocation and hamper risk sharing. Our result that
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strategic incentives are greater during periods of greater cross-sectional
dispersion (such as recessions) further amplifies this mechanism.

Away from the symmetric benchmark, our mechanism co-mingles
with the well-known result that asset prices more closely reflect the
preferences and/or strategic decisions of the largest agents. For in-
stance, a single ‘‘monopolist’’ would push prices up for all securities
he chooses to sell and push them down for all securities he buys.
The numerical exercise in the following section considers a setting
with a number of asymmetric traders, and finds that the risk-free rate
continues to decline in market concentration.

3.5. Two analytical examples

We now use two canonical examples to illustrate how strategic
considerations alter investment decisions and feed back into price
impact. In the first, we analyze two ex-ante symmetric agents with
purely diversifiable risk and show that inefficient risk sharing reduces
risky investment. In the second, we consider a setting with productivity
differences and show that price impact can lead to cross-sectional
misallocation.

For these examples, we study a special case of our model, the
strategic limit. This is the limit of a sequence of economies in which
𝑚𝑓 , 𝜇 → 0, but the size of individual strategic agents relative to the
fringe remains fixed, 𝜇

𝑚𝑓
= 𝜅. This limit preserves the nature of strategic

nteractions because strategic agents have homothetic utility and first-
rder conditions for optimal asset demand (7) depend only on 𝜅. Given

that markets clear among strategic agents in this limit (i.e., 𝐴(𝑧) → 0),
ggregating over (7) reveals that asset prices are equal to the average
tate price among strategic agents,

(𝑧) = 1
𝑁

∑

𝑧∈
𝛬𝑖 (𝑧) ∀ 𝑧. (15)

he consumption of the competitive fringe is then identified from the
ondition 𝑞(𝑧) = 𝜋(𝑧)𝑢′𝑓 (𝑐𝑓 (𝑧)). As such, price impact is given by 𝑞′(𝑧) =
𝜋(𝑧)𝑢′′(𝑐𝑓 (𝑧)) and is well-defined in this limit. In particular, since
(𝑧), 𝑚𝑓 → 0, the ratio 𝐴 (𝑧) ∕𝑚𝑓 converge to a nontrivial limit, and

he relation 𝑞′ (𝑧) = lim𝑚𝑓→0 𝑢′′𝑓

(

𝑒𝑓 (𝑧) + 𝐴(𝑧)
𝑚𝑓

)

is well-behaved. Conse-
uently, the strategic interactions of Cournot competition are preserved
ven when the fringe absorbs an infinitesimal share of strategic agents’
ggregate demand. As we now illustrate, this allows us to showcase our
heoretical results in a particularly transparent manner.

.5.1. Pure risk sharing
We first consider two ex-ante symmetric types facing pure idiosyn-

ratic risk. There are two equally likely states at date 2, 𝑧 ∈ {1, 2}
ith 𝜋(𝑧) = 1

2 , and two ex-ante symmetric types of strategic agents,
∈ {1, 2}. All agents have an initial endowment �̄�. Strategic agents face

diversifiable production risk: 𝑦𝑖(𝑖) = �̄� + 𝛥 and 𝑦𝑖(−𝑖) = �̄� − 𝛥, where
�̄� > 𝑅. That is, in either state all agents of one strategic type have a
igh return and the other have a low return. The competitive fringe
eceives �̄� in every state.

Since �̄� > 𝑅, we first search for an equilibrium in which neither
trategic agent type employs storage, i.e., 𝑠𝑖 = 0 for all 𝑖. Given ex-ante

symmetry, we posit that each agent sells 𝑎𝑆 of the claim on the state in
which she has high income, and buys 𝑎𝐵 units of the claim on the state
in which she has low income. By market clearing in the strategic limit,
we have that 𝑎𝑆 = −𝑎∗ and 𝑎𝐵 = 𝑎∗ for some 𝑎∗, with asset prices and
price impact symmetric across states, 𝑞(𝑧) = 𝑞∗ and 𝑞′(𝑧) = 𝑞′∗. Optimal
ortfolios satisfy:

Selling:
1
2 𝑢

′((�̄� + 𝛥) 𝑘 − 𝑎∗)

𝑢′(�̄� − 𝑘)
= 𝑞 − 𝜅𝑞′𝑎∗. (16)

Buying:
1
2 𝑢

′((�̄� − 𝛥) 𝑘 + 𝑎∗)

𝑢′(�̄� − 𝑘)
= 𝑞 + 𝜅𝑞′𝑎∗. (17)
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Absent price impact, there is perfect risk sharing with 𝑎∗ = 𝛥𝑘. Under
price impact, risk sharing is imperfect, 0 < 𝑎∗ < 𝛥𝑘. Moreover, the
efficiency of risk sharing declines when market concentration 𝜇 and/or
risk sharing needs, parameterized by 𝛥, increase.

The optimality condition for risky investment ∑

𝑧 𝛬𝑖 (𝑧) 𝑦𝑖(𝑧) = 1
then yields

𝑢′
(

(�̄� + 𝛥) 𝑘 − 𝑎∗
)

(�̄� + 𝛥) + 𝑢′
(

(�̄� − 𝛥) 𝑘 + 𝑎∗
)

(�̄� − 𝛥) = 2𝑢′(�̄� − 𝑘). (18)

The left-hand side is the sum of marginal-utility weighted output.
Marginal utility is low when output is high and vice versa, and the
difference in marginal utilities is decreasing in 𝑎∗. Under price impact,
both types thus reduce risky investment as market concentration and/or
risk sharing needs increase. This can also be observed using net wedges,
which are symmetrically negative for both types, −(�̄� + 𝛥)𝜅𝑞′𝑎∗ + (�̄� −
𝛥)𝜅𝑞′𝑎∗ = −2𝛥𝜅𝑞′𝑎∗ < 0.

Now consider asset prices. Because strategic types are ex-ante sym-
metric, Eq. (15) yields

𝑞 (𝑧) = 1
2

[

1
2
𝑢′((�̄� + 𝛥) 𝑘 − 𝑎∗)

𝑢′(�̄� − 𝑘)
+ 1

2
𝑢′((�̄� − 𝛥) 𝑘 + 𝑎∗)

𝑢′(�̄� − 𝑘)

]

. (19)

iven convex marginal utility, a decline in risk sharing efficiency
ecause of market concentration 𝜇 and/or dispersion 𝛥 raises average
tate prices, prices, and therefore price impact.

Finally, we verify the conjecture that it is not optimal for strategic
gents to hold storage. This requires

1
2
𝑢′((�̄� + 𝛥) 𝑘 − 𝑎∗)

𝑢′(�̄� − 𝑘)
+ 1

2
𝑢′((�̄� − 𝛥) 𝑘 + 𝑎∗)

𝑢′(�̄� − 𝑘)
≤ 1

𝑅
. (20)

Because storage is less productive than risky investment on average,
this condition always holds when risk sharing is sufficiently efficient,
but it may be violated when the efficiency of risk sharing is sufficiently
low. In this case, both types will start self-insuring using cash.

3.5.2. Misallocation
We now consider a setting in which strategic types differ in their

average productivity and there is no risk. This allows us to highlight
how market concentration can lead to misallocation. There are two
types of strategic agents, 𝑖 ∈ {1, 2}. Production technologies satisfy
𝑦1(𝑧) = 𝑦ℎ and 𝑦2(𝑧) = 𝑦𝑙 ∈ (𝑅, 𝑦ℎ) so that Type 2’s production
technology is strictly dominated. All agents have an initial endowment
̄. The competitive fringe receives �̄� in every state.

Since there is no risk, we can search for an equilibrium where agent
1 sells 𝑎1 units of the claim to its production and agent 2 buys 𝑎2 units.
By market clearing in the strategic limit, we have 𝑎1 = −𝑎2 = −𝑎∗ for
some 𝑎∗. Refer to the price and price impact of this claim as 𝑞∗ and
𝑞′∗, respectively. Because strategic agents’ net expenditures on assets
at date 1 are 𝑘1 − 𝑞𝑎∗ and 𝑘2 + 𝑞𝑎∗, respectively, 𝑎∗ must satisfy:

Type 1 optimality:
𝑢′(𝑦ℎ𝑘1 − 𝑎∗)

𝑢′(�̄� + 𝑞𝑎∗ − 𝑘1)
= 𝑞 − 𝜅𝑞′𝑎∗.

ype 2 optimality:
𝑢′(𝑦𝑙𝑘2 + 𝑎∗)

𝑢′(�̄� − 𝑞𝑎∗ − 𝑘2)
= 𝑞 + 𝜅𝑞′𝑎∗.

nder perfect competition, Type 2 does not invest but Type 1 does not
arn rents for owning the better technology. As a result, 𝑞∗ = 1∕𝑦ℎ

nd 𝑎∗ = 1
2 𝑦

ℎ𝑘1. Given that strategic agents have log utility, total risky
nvestment is half of the aggregate endowment, 𝑘1 = �̄�.

With price impact, Type 1 extracts rents by rationing the supply of
claims on future consumption to raise their price. As such, 𝑞∗ > 1∕𝑦ℎ.
Since it is more expensive to Type 2 to buy future consumption through
financial markets, it is more attractive on the margin to invest in her
own production technology. In particular, net wedges are

Type 1 ∶ −𝑦ℎ𝜅𝑞′𝑎∗ < 0.

Type 2 ∶ 𝑦𝑙𝜅𝑞′𝑎∗ > 0.

As such, the high-productivity agent under-invests and the low-
productivity agent over-invests relative to perfect competition.
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4. Recent trends through the lens of the model

In this section, we use our model to quantitatively interpret impor-
tant trends in corporate discount rates and investment behavior over
the last two decades. Previous literature (e.g., Gutiérrez and Philippon,
2017b; Crouzet and Eberly, 2021) document that starting in the early
2000s, there has been a sharp decline in corporate investment and
productivity when compared to previous trends and, more specifically,
relative to financial measures of the cost of capital and investment
opportunities (i.e, Tobin’s q) over the same period. One particular
manifestation of this is the observation in Gormsen and Huber (2022)
that firms’ self-reported discount rates (or hurdle rates) far exceed their
perceptions of their weighted average cost of capital, and that the
wedge between the two has increased. In particular, discount rates have
been relatively stable since 2002 despite sizable declines in the risk-free
rate and the cost of capital. (See Figs. B.1 and B.2 in Appendix B, which
also includes a detailed description of the data).

Our theory suggests that market concentration can generate such
a wedge between discount rates (i.e., firm-level marginal valuations
of investment) and market-based costs of capital (i.e., the return on
assets measured using market prices). However, it is not obvious that
we can also capture the key time series pattern, which is that the wedge
increased sharply from 2002 to 2016 while market concentration grew
only modestly over the same time period. Using a simple calibration
exercise, we show our model can indeed capture most of the observed
stability in discount rates alongside the decline in risk-free rates and
costs of capital. The reason is that the distortions induced by market
power can be amplified by then secular increase in cross-sectional
productivity dispersion even when market concentration is held fixed.
When we also allow for a small increase in market concentration, we
fully account for the lower weighted-average costs of capital in 2016,
as well as a decline in real investment but an increase in cash holdings.

4.1. Setup

To illustrate the evolution of discount rates and investment wedges
over time, we consider a simple overlapping generations version of the
model. In this model, time is discrete and indexed by 𝑡 = {0, 1, 2,…}. At
each date, a new generation of young strategic agents and a competitive
fringe enters the economy. Each strategic agent has additive time-
separable CRRA utility over consumption at dates 𝑡 and 𝑡 + 1, and
receives an initial endowment 𝑒. They can invest, consume, and trade

rrow securities in complete financial markets alongside a competitive
ringe, and we consider the limit as in Section 3.5 in which the fringe
s arbitrarily small (𝑚𝑓 → 0) but the relative size 𝜇

𝑚𝑓
converges to

a constant, 𝜅. Young agents make their investment and consumption
decisions at date 𝑡 and produce at date 𝑡+ 1. Old agents consume their
output and exit the economy. With this setup, the decision problem of
a strategic agent is identical to the one in Eq. (3).

There are four types of strategic agents (i.e., 𝑁 = 4) indexed by
heir production technologies. There are green and red agents and,
ithin each color type, volatile and stable firms. Consequently, we

ndex an agent by 𝑖 ∈ {𝑔𝑠, 𝑔𝑣, 𝑟𝑠, 𝑟𝑣} for ‘‘green stable,’’ ‘‘green volatile,’’
‘red stable,’’ and ‘‘red volatile,’’ respectively. The stochastic process for
isky investment returns for type 𝑖, 𝑦𝑖 (𝑧), is composed of an aggregate
omponent, 𝑌𝑧𝐴 for aggregate state 𝑧𝐴 ∈ {𝐿,𝐻}, and an agent-specific
omponent. The aggregate state follows a persistent two-state Markov
rocess with a transition matrix:

=
[

𝜌𝐻 1 − 𝜌𝐻
1 − 𝜌𝐿 𝜌𝐿

]

,

where 𝜌𝐻 > 𝜌𝐿. Agent-specific productivity is driven by a four-state
process that is independent of aggregate productivity and across time,
and whose realizations are boom, favorable, unfavorable, and bust.
Favorable and unfavorable states each occur with probability 0.45,
while boom and bust states each occur with probability 0.05. If a green



Journal of Financial Economics 159 (2024) 103875D. Neuhann and M. Sockin
Table 1
State-contingent productivity for green agents. Red agent productivity is the mirror image.

Green agent productivity

Boom Favorable Unfavorable Bust

Volatile firm 𝑌 (𝑧𝐴) + 𝑏 + 𝛿 + 𝛥, 𝑌 (𝑧𝐴) + 𝑏 + 𝛿 𝑌 (𝑧𝐴) + 𝑏 − 𝛿 𝑌 (𝑧𝐴) + 𝑏 − 𝛿 − 𝛥
Stable firm 𝑌 (𝑧𝐴) − 𝑏 + 𝛿, 𝑌 (𝑧𝐴) − 𝑏 + 𝛿 𝑌 (𝑧𝐴) − 𝑏 − 𝛿 𝑌 (𝑧𝐴) − 𝑏 − 𝛿
t
b

m
m
r
i
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agent receives a boom shock, there is a red agent who receives a bust
shock, and vice versa. The same is true for favorable versus unfavorable
shocks. Hence, these shocks are, in principle, perfectly diversifiable.

The difference between safe and volatile agents is that safe agents
have no exposure to booms and busts, while volatile firms have higher
average productivity. We parameterize distributional production risk
by 𝛿(𝑧𝐴), volatile production risk by 𝛥(𝑧𝐴) > 0, and average productivity
gap by 𝑏 > 0. The resulting state-contingent distribution of productivity
for green agents is shown in Table 1. Since the productivity distribution
of red agents is the mirror image, red and green firms of each type are
ex-ante identical.

Because of the productivity gap 𝑏, it is immediate that only volatile
firms invest in the competitive benchmark. This is because risk sharing
among red and green agents is sufficient to eliminate all distributional
risk. As a result, any investment by stable firms in our model is
indicative of misallocation induced by market power.

4.2. Mapping the model to data

We next speak to data on corporate discount rates and costs of
capital. In the model, strategic agent 𝑖’s discount rate, which is an
internal hurdle rate, corresponds to the return on the wealth portfolio
evaluated at her state prices (i.e., private valuations):

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑅𝑎𝑡𝑒𝑖 =
∑

𝑧 𝜋 (𝑧) 𝑐2,𝑖 (𝑧)

𝑒 − 𝑐1,𝑖 −
∑

𝑧 𝛬𝑖 (𝑧)
(

𝑦𝑖 (𝑧) 𝑘𝑖 + 𝑅𝑠𝑖
)

− 𝑘𝑖 − 𝑠𝑖
. (21)

The perceived WACC is the analogous expression, but evaluated at
market prices:

𝑊𝐴𝐶𝐶𝑖 =
∑

𝑧 𝜋 (𝑧) 𝑐2,𝑖 (𝑧)

𝑒 − 𝑐1,𝑖 −
∑

𝑧 𝑞 (𝑧)
(

𝑦𝑖 (𝑧) 𝑘𝑖 + 𝑅𝑠𝑖
)

− 𝑘𝑖 − 𝑠𝑖
. (22)

We construct cross-sectional averages of these moments by weighting
with the model-implied market values of each firm type.

4.3. Experiment

To explore trends in the rates of return and investment, we conduct
the following thought experiment. First, we fit our model to the risk-
free rate and corporate returns from Gormsen and Huber (2022) in
2002. One of the key parameters of the model is 𝛥, which determines
the dispersion in firm-level productivity. We fix this parameter to match
1/2 times the interquartile range of 0.3258 estimated using Census
data by Cunningham et al. (2022), or 0.1629. We then feed in the
2016 level of 𝛥 implied by the same paper, and ask to what extent our
model matches the change in the risk-free rate and the rates of return
reported by Gormsen and Huber (2022). We focus on the years 2002–
2016 because this ensures the maximum overlap between the two data
series. Appendix B provides details.

The model period is one year, and we interpret all returns to be
nominal. We choose the return process to be broadly in line with U.S.
aggregate data. As discussed above, we set the distributional production
risk 𝛥 to be 0.1629. We choose the additional production volatility of
volatile firms 𝛿 to be 0.10, which is approximately one quarter of the
cross-sectional sales-growth volatility among Compustat firms. We set
the productivity gap 𝑏 to 0.01 and the gross return on storage to 1
(i.e., cash). The initial wealth of each strategic agent, 𝑒, is 3. To broadly
measure the duration of booms and recessions, we set the persistence
10
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Table 2
Parameter choices for the baseline calibration to 2002.

Parameter Interpretation Value

𝑅 Gross Return to Storage 1.000
𝑒 Endowment of Strategic Agents 3.000
𝑏 Productivity Gap 0.010
𝛿 Volatile Production Risk 0.100
𝛥 Distributional Production Risk 0.163
𝜌𝐻 Persistence of High State 0.666
𝜌𝐿 Persistence of Low State 0.100
𝑌𝐿 Aggregate Productivity Low State 0.970
𝑌𝐻 Aggregate Productivity High State 1.243
𝛾, 𝛾𝑓 Agent Risk Aversion 5.014
𝜅 Relative Size of Strategic Agents 0.388

Table 3
Data and model moments for the baseline calibration.

Moment 2002 Data Model

Discount Rate 15.20% 15.20%
WACC 9.65% 9.65%
Risk-free Rate 1.67% 1.67%
Aggregate Investment – 5.75
Aggregate Savings – 0

Table 4
Data and model moments for the experiments. Experiment 1 considers an increase in
𝛥 from 0.163 to 0.179. Experiment 2 additionally raises market concentration 𝜅 from
0.39 to 0.41.

Moment 2016 Data Experiment 1 Experiment 2

Discount Rate 16.47% 15.20% 15.06%
WACC 8.3% 8.57% 8.29%
Risk-free Rate 0.60% 0.63% 0.50%
Aggregate Investment – 5.75 5.70
Aggregate Savings – 0 0.06

of the high aggregate state, 𝜌𝐻 , to 2/3, and of the low aggregate state,
𝜌𝐿, to 0.10. We also set the aggregate productivity in the low state, 𝑌𝐿,
o 0.97. Finally, we set the probabilities of ‘favorable’ and ‘unfavorable’
oth to 0.45, and of ‘boom’ and ‘bust’ both to 0.05.

We calibrate the three remaining parameters using a simulated
ethod of moments approach. Given our time frame, we focus on
odel-implied moments conditional on the boom state only. Table 2

eports the model parameters. We choose the aggregate productivity
n the high state, 𝑌𝐻 , to match the 2002 1-year risk-free rate of
.67%. We set the risk aversions of strategic agents and the competitive
ringe to be the same (i.e., 𝛾 = 𝛾𝑓 ), and target 𝛾 to match the 2002
erceived weighted average cost of capital (WACC) from Gormsen and
uber (2022) of 9.65%. Finally, we set the relative size of strategic
gents 𝜅 to match the 2002 corporate discount rate from Gormsen
nd Huber (2022) of 15.20%. Table 3 shows an exact correspondence
etween model and data moments in 2002. However, this should not
e understood as model validation because we have more parameters
han moments.
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Fig. 1. Comparative statics with respect to market concentration 𝜇, where 𝜅 = 𝜇∕𝑚𝑓 . The dispersion parameter 𝛥 is set to its 2016 value. The dashed vertical line shows the
calibrated value of 𝜅 for 2016. Values on the 𝑥-axis are rounded.
4.4. Interpreting changes from 2002 to 2016

We next evaluate the extent to which an increase in productivity
dispersion and/or the degree of market concentration can account for
the joint decline in the risk-free rate and costs of capital observed dur-
ing the 2000s, as well as the decline in investment relative to firms’ cost
of capital and the increase in cash holdings. In our first experiment, we
fix parameters at the 2002 values (given in Table 2), and exogenously
feed in the change in productivity dispersion from Cunningham et al.
(2022), who estimate that the interquartile range in firm productivity
rose from 0.3258 in 2002 to 0.3578 in 2016. This corresponds to a 10%
increase in productivity dispersion. Importantly, this change is fully
determined outside of our model.

Column (3) of Table 4 shows data and model-implied moments for
2016 given the exogenous change in dispersion. In line with the data,
the risk-free rate falls to 0.63%, the WACC to declines to 8.57%, and
the discount rate is unchanged at 15.20%. Investment does increase
modestly for both safe and volatile firms, although it is small relative
to the decline in the cost of capital. This is because the stark decline
in the WACC weakly raises the value of individual production for both
strategic types despite worse risk sharing. Although these effects are
not driven by rising market power, they are tightly related to the
level of market concentration: if markets were perfectly competitive,
equilibrium outcomes would be unaffected by dispersion.

To isolate the effects of market concentration, we conduct a second
experiment in which we raise productivity dispersion as before and
also modestly increase market concentration 𝜅 = 𝜇

𝑚𝑓
from 0.39 to

0.41. Such a mild increase is broadly in line with the data from Kwon
et al. (2023), who show that market concentration was high but only
modestly increasing starting from 2002. Column (4) of Table 4 shows
our findings. A small increase in market concentration allows us to
match the level of the WACC, and mildly lowers both the risk-free
rate and the discount rate. In contrast to the first experiment, risky
investment declines and cash holdings (i.e., storage) increase relative
to 2002. This is because the substitution effect induced by poor risk
sharing now dominates the wealth effect.

Interestingly, our findings suggest that it may be difficult to assess
the full extent of the distortions from market concentration using
standard measures of price impact, such as price elasticities in financial
markets. In particular, price elasticity in our model12 is 0.324 for our

12 For agent 𝑖 and asset 𝑧, the elasticity is 𝑞′(𝑧)
𝑞(𝑧)

𝜇𝑎𝑖(𝑧). We report the
cross-sectional average across 𝑖 and 𝑧.
11
baseline parameters, 0.351 under Experiment 1, and 0.362 under Ex-
periment 2. Despite an increase in the underlying risk-sharing friction,
the elasticity is stable because both the quantity and price of risk is
changing alongside the trading volumes. This is consistent with Koijen
and Yogo (2019), who estimate that the price impact in equity markets
is high but relatively stable over the time period in question.

Figs. 1 and 2 illustrate the underlying mechanisms using compar-
ative statics with respect to relative market concentration 𝜅 = 𝜇

𝑚𝑓
and productivity dispersion 𝛥. Parameters are fixed at their 2016
values. The dashed vertical lines indicate the parameter values for
2016. The left panel of Fig. 1 shows that, as concentration increases,
all three rates of return fall. This partly because of the imperfect
risk sharing that raises the value of insurance, and partly because
investment by the less productive type (the stable type) reduces the
average return to investment (see also the right panel). The right panel
shows that, when market concentration is sufficiently high, firms begin
self-insuring through storage. This leads to a steeper decline in risky
investment, flattens the decline in the risk-free rate, and accelerates the
decline in the risky rates of returns. When all types employ storage, the
risk-free rate must be equal to the zero net return offered by storage.

In Fig. 2, we consider changes in productivity dispersion 𝛥. All else
equal, higher dispersion leads to higher trading needs. In concentrated
markets, this raises the distortions from market power. This effect is
mild as long as dispersion is not too high, in which case agents continue
to invest primarily in the risky technology. Since the distribution of
income across states is thus approximately constant, the response is
initially reflected through a rise in asset prices. This lowers both the
WACC and the risk-free rate. Once agents begin to employ storage,
however, increasing productivity dispersion leads to a decline in the
investment of both stable and volatile types, which reduces both output
and production risk in the economy. This change in the quantity of risk
and expected future income further depresses all three rates of return.

Taken together, the model gives rise to a sharp nonlinearity in the
relative response of real quantities and returns. An increase in market
concentration primarily exacerbates capital misallocation among strate-
gic agents while an increase in productivity dispersion is principally
reflected in inflated asset prices until storage is employed. Both lead to
declines in not only the risk-free rate, but also in strategic agents’ per-
ceived WACC and discount rates. Such risk compression is qualitatively
in line with recent data (e.g., Bianchi et al., 2020).



Journal of Financial Economics 159 (2024) 103875D. Neuhann and M. Sockin
Fig. 2. Comparative statics with respect to dispersion 𝛥. The 2016 value of 𝛥 is denoted via dashed vertical line. Values on the 𝑥-axis are rounded.
5. Additional empirical implications

In addition to the evidence on firm wedges in discount rates and
the co-movement between investment, risk-free rates, and the cost
of capital, our model makes several additional predictions. First, a
necessary condition for our mechanism to operate is that large firms
hedge but under-diversify their risks. That large firms hedge is well-
documented in the literature (e.g., Allayannis and Weston, 2001; Pur-
nanandam, 2008; Batram et al., 2009; Panaretou, 2014). Regarding
under-diversification, Guay and Kothari (2003) show that 234 large
non-financial corporations only minimally employ derivatives to hedge
against interest rate, exchange rate, and commodity price fluctuations.
In addition, Amel-Zadeh et al. (2022) document that up to one-fifth of
the largest U.S. firms have a single large nonfinancial blockholder or
insider. A unique prediction of our theory is a negative relation between
hedging activities and Tobin’s q.

Our theory also has connections to the production-based asset pric-
ing literature, which uses the absence of arbitrage to relate the returns
on a firm’s equity and debt to the return on its assets. In the canonical
theory (e.g., Cochrane, 1996), the return on assets is determined by
how the firm values its marginal return on investment. In our theory,
this relationship is modified by a wedge between the market’s and an
insider’s valuation of a firm’s assets. We can express the first-order
conditions from Eq. (11) as:

∑

𝑧
𝑅𝐼 (𝑧)− 𝑟𝑚𝑓 = −𝐶𝑜𝑣

(

𝑞 (𝑧)
∑

𝑧 𝑞 (𝑧)
, 𝑅𝐼 (𝑧)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Market Risk Premium

+ −
∑

𝑧

𝑤𝑖(𝑧)
∑

𝑧 𝑞 (𝑧)
𝑅𝐼 (𝑧)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Strategic Trading Premium

,

(23)

where 𝑅𝐼 (𝑧) =
𝑦𝑖(𝑧)𝑘𝑖+𝑅𝑠𝑖

𝑘𝑖+𝑠𝑖
is the state-contingent return on investment.

The second piece is a non-marketed excess return the firm garners from
strategic trading in financial markets. From Eq. (10), this piece is not
a conventional risk premium, but rather related to price impact and a
firm’s trading activities.

6. Conclusion

We construct a model of concentrated financial markets in which
large risk-averse firms invest in risky projects and internalize their
price impact when trading state-contingent claims in financial markets.
This results in cross-sectional misallocation of capital and aggregate
under-investment that exacerbates financial market illiquidity in an
12
adverse feedback loop. In line with recent trends, increased market
concentration can lead to a joint decline in the risk-free rate, risk
premia, investment, and productivity. Our analysis can also explain the
documented wedge between firm investment hurdle rates and financial
market returns, and how it varies with the risk-free rate, as well as the
rise of cash holdings among nonfinancial corporations. Our framework
is tractable and useful for studying the economic consequences of
financial market concentration more generally.
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Appendix A. Proofs of propositions

A.1. Proof of Proposition 1

Step 1: The problem of the competitive fringe
From the first-order condition for 𝑎𝑓 (𝑧) from the competitive fringe’s

problem (2), we can recover the pricing equation of the Arrow–Debreu
claim to security 𝑧:

𝑞 (𝑧) = 𝜋(𝑧)𝑢′𝑓
(

𝑐2,𝑓 (𝑧)
)

= 𝛬𝑓 (𝑧) , (A.1)

where 𝛬𝑓 (𝑧) is the competitive fringe’s state price. Since 𝑐2,𝑓 (𝑧) =
𝑒2,𝑓 (𝑧)+𝑎𝑓 (𝑧), imposing the market-clearing condition, (1), reveals that:

𝑞 (𝑧) = 𝜋(𝑧)𝑢′𝑓

(

𝑒2,𝑓 (𝑧) −
1
𝑚𝑓

𝐴(𝑧)
)

. (A.2)

In equilibrium, this must be the realized price of the claim, 𝑄(𝐀, 𝑧).
Consequently, the competitive fringe’s Euler equation pins down asset
prices in the economy. As this price is a function of state variables
from the perspective of the fringe, we designate the realized price more
concisely as:

𝑞 𝑧 = 𝑄(𝐀, 𝑧). (A.3)
( )
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Step 2: Equilibrium price impact
We next impose a consequence of our Cournot–Walras equilibrium

concept that agents of type 𝑖 take the demands of other agents (even
ithin their type) as given. As a consequence, because 𝑢𝑓 (𝑧) is twice

ontinuously differentiable and each agent’s position size scales by its
ass 𝜇, we can derive each agent’s perceived price impact:

𝜕�̃�𝑗,𝑖(𝐀, 𝑧)
𝜕𝑎𝑗,𝑖 (𝑧)

= −
𝜇
𝑚𝑓

𝜋(𝑧)𝑢′′𝑓
(

𝑐2,𝑓 (𝑧)
)

= −
𝜇
𝑚𝑓

𝜕𝑞(𝑧)
𝜕𝐴 (𝑧)

, (A.4)

which also implies that price impact is symmetric across all strategic
agents. Defining 𝑞′ (𝑧) = 𝜕𝑞(𝑧)

𝜕𝐴(𝑧) yields the expression in the statement of
he proposition.
Step 3: The law of one price
The law of one price holds because the competitive fringe prices all

ssets. To see this, suppose there are two assets 𝑗 and 𝑘 with payoffs
𝑗 (𝑧) and 𝑥𝑘 (𝑧). Then:

𝑗 =
∑

𝑧∈
𝑥𝑗 (𝑧)𝛬𝑓 (𝑧) =

∑

𝑧∈
𝑥𝑘 (𝑧)𝛬𝑓 (𝑧) = 𝑞𝑗 . (A.5)

Since the fringe participates in all asset markets, no arbitrage is satisfied
in our setting.

Step 4: Market structure invariance
Suppose we have some arbitrary asset span indexed by the ||× ||

atrix 𝑋 that is of full rank. In the special case of Arrow–Debreu assets,
= 𝐼

||

, i.e., the identity matrix of rank ||. Let 𝑥𝑘 index the 𝑘th row
ector of 𝑋, and 𝑥𝑘 (𝑧) be the dividend asset 𝑘 pays in state 𝑧.

If the competitive fringe trades assets with asset span 𝑋, from the
irst-order conditions of the competitive fringe’s optimization problem
hat the vector of asset prices 𝑞𝑋 satisfies:

𝑞𝑋 = 𝑋𝛬𝑓 = 𝑋𝑞, (A.6)

here 𝛬𝑓 is the vector of the fringe’s state prices and 𝑞 the vector of
rrow asset prices.

The quasi-linear competitive fringe now maximizes 𝑢𝑓
𝑦𝑓 (𝑧) −

∑

||

𝑘=1 𝑥 (𝑧) 𝑥𝑘 (𝑧)𝐴𝑥𝑘 (𝑧)
)

+
∑

||

𝑘=1 𝑥 (𝑧) 𝑞𝑥𝑘𝐴𝑥𝑘 (𝑧), where 𝐴𝑥𝑘 (𝑧)
s the total demand for asset 𝑘 of the strategic agents. It follows that
he price impact function can be summarized by the matrix 𝛤 :

= 𝑋𝑈𝑋′, (A.7)

here 𝑈 is the diagonal matrix with diagonal entries
𝜇
𝑚𝑓

𝜋(𝑧)𝑢′′𝑓
(

𝑐2,𝑓 (𝑧)
)

.
We now establish that whether the complete markets span is 𝐼

||

r 𝑋 has no impact on allocations. Our arguments are similar in spirit
o those in Carvajal (2018), but applied to our setting with production
nd do not impose quasi-linearity of strategic agents. If there are no
eal effects, the consumption allocations of the fringe, 𝑐𝑓1 and 𝑐2,𝑓 (𝑧),
nd its state prices, 𝛬𝑓 (𝑧), must be the same in both economies.

Notice we can stack the first-order conditions for strategic agent 𝑖
ith asset span 𝐼

||

from Eq. (A.15) as:

⃗𝑖 = 𝛬𝑓 + 𝑈𝑎𝑖, (A.8)

here 𝛬𝑖 are the stacked state prices of agent 𝑖, 𝑎𝑖 is the vector of her
sset positions, and we replace Arrow–Debreu prices 𝑞 with 𝛬𝑓 .

Let ⃗𝑎𝑖,𝑥 be the vector of asset positions of agent 𝑖 when she instead
trades with the asset span 𝑋. Imposing invariance of the consumption
allocations of strategic agent 𝑖 requires that:

�⃗� = 𝑋′ ⃗𝑎𝑖,𝑥. (A.9)

Substituting with Eq. (A.9), we can manipulate Eq. (A.8) to arrive at:

𝑋𝛬𝑖 = 𝑋𝛬𝑓 +𝑋𝑈𝑋′ ⃗𝑎𝑖,𝑥 = 𝑋𝛬𝑓 + 𝛤 ⃗𝑎𝑖,𝑥, (A.10)

where we have also substituted for 𝑋𝑈𝑋′ with Eq. (A.7). This is the
identical stacked first-order conditions if the strategic agent instead
13

traded asset span 𝑋.
Consequently, if the competitive fringe’s consumption allocations
are unchanged between asset spans, then the optimal portfolios of each
strategic agent also do not change. If all strategic agents have the same
asset demands, then their aggregate demand for asset exposures in each
state 𝑧 are the same. By market clearing, then, the state-specific asset
exposures of the competitive fringe are the same in both asset spans,
and so are their consumption allocations, confirming our conjecture.

What remains for us to show is that the capital and savings choices
and budgets sets of strategic agents are unchanged across asset spans.
This, however, is trivial because no arbitrage makes invariant the cost
of state-specific asset exposures. Consequently, financing the same port-
folio of state-specific asset exposures costs the same for asset span 𝐼

||

s with asset span 𝑋. Given the same capital and savings choices, 𝑘𝑖 and
𝑖 for each 𝑖, the marginal utility of each agent with market structure

is the same state-by-state as with market structure 𝐼
||

, confirming
hat 𝑘𝑖 and 𝑠𝑖 are also optimal with market structure 𝑋. ■

.2. Proof of Corollary 1

Suppose the competitive fringe has convex marginal utility in addi-
ion to strictly concave utility. Then a decrease in its consumption at
ate 2 in state 𝑧 not only increases its marginal utility but the derivative
f its marginal utility in state 𝑧. From Proposition 1, this raises both the
rice of the Arrow security referencing state 𝑧 and the price impact in

that market.
If total resources 𝑌 (𝑧) in state 𝑧 fall because of lower productivity

𝑦𝑖 (𝑧)), strategic agents’ demand for insurance against state 𝑧 from the
fringe must weakly increase. This is because they have less aggregate
resources with which to insure each other. If the fringe sells more
securities against state 𝑧, then it consumes less in state 𝑧 and the claim
in the corollary follows. If strategic agents invest less efficiently in
risky capital and consume more at date 1, then there are again less
ggregate resources among strategic agents at date 1, and the claim
gain follows. ■

.3. Proof of Lemma 1

Step 1: The problem of strategic agents
We first consider the optimization problem of strategic agent 𝑗 of

type 𝑖, (3). In what follows, we attach the Lagrange multiplier 𝜑𝑖 to
the budget constraint. The first-order necessary conditions for 𝑐1,𝑖, 𝑘𝑖,
𝑠𝑖, and {𝑎𝑖 (𝑧)}𝑧∈ are then given by:

𝑐1,𝑗,𝑖 ∶ 𝑢′
(

𝑐1,𝑗,𝑖
)

− 𝜑𝑗,𝑖 = 0, (A.11)

𝑘𝑗,𝑖 ∶
∑

𝑧∈
𝜋 (𝑧) 𝑢′

(

𝑐2,𝑗,𝑖 (𝑧)
)

𝑦𝑖 (𝑧) − 𝜑𝑗,𝑖 ≤ 0
(

= 𝑖𝑓 𝑘𝑗,𝑖 > 0
)

, (A.12)

𝑠𝑗,𝑖 ∶
∑

𝑧∈
𝜋 (𝑧) 𝑢′

(

𝑐2,𝑗,𝑖 (𝑧)
)

𝑅 − 𝜑𝑗,𝑖 ≤ 0
(

= 𝑖𝑓 𝑠𝑗,𝑖 > 0
)

, (A.13)

𝑎𝑗,𝑖 (𝑧) ∶ 𝜋 (𝑧) 𝑢′
(

𝑐2,𝑗,𝑖 (𝑧)
)

− 𝜑𝑗,𝑖

(

�̃�𝑗,𝑖(𝐀, 𝑧) +
𝜕�̃�𝑗,𝑖(𝐀, 𝑧)
𝜕𝑎𝑗,𝑖(𝑧)

𝑎𝑖,𝑗 (𝑧)

)

= 0. (A.14)

The above represents the first-order necessary conditions for agent 𝑗 of
type 𝑖’s problem. From (A.11), it is immediate that 𝜑𝑗,𝑖 = 𝑢′

(

𝑐1,𝑗,𝑖
)

≥ 0
because marginal utility is nonnegative.

Now that we have derived the first-order necessary conditions for
agent 𝑗 of type 𝑖’s optimal asset demands, we can impose the consis-
tency required of a Cournot–Walras equilibrium with the competitive
fringe. Since strategic agent 𝑖 has rational expectations, her perceived
price impact must coincide with her actual price impact from (5) in
Proposition 1. Consequently, the first-order necessary condition (A.14)
reduces to:

𝑎𝑗,𝑖 (𝑧) ∶ 𝛬𝑗,𝑖 (𝑧) = 𝑞 (𝑧) +
𝜇
𝑚𝑓

𝑞′(𝑧)𝑎𝑗,𝑖 (𝑧) ∀ 𝑧 ∈ , (A.15)

here 𝛬𝑗,𝑖 (𝑧) is the state price of strategic agent 𝑗 of type 𝑖 in state 𝑧,
.e., 𝛬 (𝑧) = 𝜋 (𝑧)

𝑢′
(

𝑐2,𝑗,𝑖(𝑧)
)

( ) .
𝑗,𝑖 𝑢′ 𝑐1,𝑗,𝑖
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We next establish that the correspondence for admissible controls
from the constraint set of strategic agent 𝑗 of type 𝑖 is compact-valued.

Notice first that strategic agent 𝑗 of type 𝑖 would never take an
infinite position in any asset. If a strategic agent takes an infinite
negative position in asset 𝑧, 𝑎𝑗,𝑖 (𝑧) → −∞, then there are two cases
to consider for the right-hand side of (A.15). First, if another strategic
agent takes an off-setting position in the asset, then 𝑞 (𝑧) and 𝑞′ (𝑧)
remain positive and well-defined, and the right-hand side tends to −∞
because of the 𝑎𝑗,𝑖 (𝑧) term. Second, if the fringe is forced to absorb the
supply, then 𝑞 (𝑧) falls because the fringe’s state prices are decreasing
n the fringe’s consumption. Either the prices remain positive, in which
ase, the previous conclusion that the left-hand side is −∞ holds,
r prices tend to zero and the left-hand side tends to zero. In both
ases, the left-hand side remains positive and may tend to ∞ because
nitial consumption 𝑐1,𝑖 becomes infinite, 𝑐1,𝑖 → ∞. This is clearly a

contradiction as the seller would not want to be a buyer in that security
market.

A similar argument applies to infinite demand, in which case the
right-hand side of (A.15) tends to positive ∞ (the demand is either
offset by a strategic agent or absorbed by the fringe through infinitely
negative date 2 consumption in state 𝑧). The left-hand side, however,
tends to zero with infinite consumption at date 2, which contradicts
the equality of the first-order condition. As such, no strategic agent will
take an infinite position in any security.

Notice next that the capital and storage choices by strategic agent
𝑗, 𝑖, 𝑘𝑗,𝑖, and 𝑠𝑗,𝑖, respectively, are also bounded. First, they are restricted
to be nonnegative by feasibility. Second, because no agent would ever
take an arbitrarily negative asset position, the total resources available
for capital and storage are consequently also bounded.

Finally, consumption at both dates is bounded. At date 2, this is the
case because endowments and production payoffs are bounded, and
storage and capital decisions are also bounded. At date 1, this is the
case because all security positions are bounded.

Consequently, we can bound all controls of strategic agent 𝑗 of type
𝑖’s problem, {𝑐1,𝑗,𝑖, {𝑎𝑗,𝑖(𝑧)}𝑧∈, 𝑘𝑗,𝑖, 𝑠𝑗,𝑖}, in a closed and bounded set.
By the Heine-Borel theorem, this set is compact.

We now recall from Proposition 1 that the pricing functional
𝑄𝑗,𝑖(𝐀, 𝑧) is continuously differentiable in 𝐀 because it is the marginal
utility of the competitive fringe in state 𝑧, 𝜋 (𝑧) 𝑢′𝑓

(

𝑐2,𝑓 (𝑧)
)

. Since the
state prices of the strategic agents and the price impact functional are
continuous because all utility functions are 2, strategic agent 𝑗, 𝑖’s
choice correspondence set is also continuous in the optimization prob-
lem’s primitives (i.e., production processes and initial endowments).
As such, the choice correspondence of strategic agent 𝑗, 𝑖’s problem is
continuous and compact-valued.

It then follows because the objective function of strategic agent 𝑗, 𝑖
is continuous (in fact, differentiable), and the choice correspondence is
continuous and compact-valued, that by Berges’ theory of the maximum
a solution to the decision problem of strategic agent 𝑗, 𝑖 exists. As the
choice of 𝑗, 𝑖 was arbitrary, this holds for all agents 𝑗 of type 𝑖 and all
types 𝑖 ∈ {1,… , 𝑁}.

Step 2: Existence
As a result of Berge’s theory of the maximum, the optimal policies of

each strategic agent are an upper-hemicontinuous correspondences. We
can then construct a mapping from a conjectured set of investment and
asset decisions for all strategic agents to an optimal set of investment
and asset decisions using the market-clearing conditions (1) and the op-
timal policy correspondences as an equilibrium correspondence whose
image is a compact space. Since the budget constraints of strategic
agents are not necessarily convex because of price impact, we allow
for randomization of consumption bundles to ensure that the compact
space is also convex. We can then apply Kakutani’s fixed-point theorem
14

to conclude that an equilibrium exists. w
Step 3: Homogeneity of optimal policies in initial wealth
Suppose that the optimal policies of strategic agent 𝑗 of type 𝑖

satisfy 𝑐1,𝑗,𝑖 = 𝑐𝑗,𝑖,1𝑒, 𝑐2,𝑗,𝑖 (𝑧) = 𝑐2,𝑗,𝑖 (𝑧) 𝑒, 𝑘𝑗,𝑖 = �̂�𝑗,𝑖𝑒, 𝑠𝑗,𝑖 = �̂�𝑗,𝑖𝑒, and
𝑎𝑗,𝑖 (𝑧) = �̂�𝑗,𝑖 (𝑧) 𝑒. We then rewrite the FONCs (A.12), (A.13), and (A.15)
for strategic agent 𝑗 of type 𝑖, given the homotheticity of strategic agent
preferences as:

�̂�𝑗,𝑖 ∶
∑

𝑧∈
𝜋 (𝑧)

𝑢′
(

𝑐2,𝑗,𝑖 (𝑧)
)

𝑢′
(

𝑐1,𝑗,𝑖
) 𝑦𝑖 (𝑧) − 1 ≤ 0

(

= 𝑖𝑓 𝑘𝑗,𝑖 > 0
)

, (A.16)

�̂�𝑗,𝑖 ∶
∑

𝑧∈
𝜋 (𝑧)

𝑢′
(

𝑐2,𝑗,𝑖 (𝑧)
)

𝑢′
(

𝑐1,𝑗,𝑖
) 𝑅 − 1 ≤ 0

(

= 𝑖𝑓 𝑠𝑗,𝑖 > 0
)

, (A.17)

�̂�𝑗,𝑖 (𝑧) ∶ 𝜋 (𝑧)
𝑢′
(

𝑐2,𝑗,𝑖 (𝑧)
)

𝑢′
(

𝑐1,𝑗,𝑖
) − 𝑞 (𝑧) −

𝜇
𝑚𝑓

𝑞′(𝑧)�̂�𝑗,𝑖 (𝑧) = 0, (A.18)

here we recognize that 𝑞′(𝑧) = 1
𝑒 𝑞

′(𝑧), where 𝑞′(𝑧) = 𝜕�̃�𝑗,𝑖(𝐀,𝑧)
𝜕�̂�𝑗,𝑖(𝑧)

. It then
ollows that, conditional on prices 𝑞 (𝑧), the optimal policies of strategic
gent 𝑗 of type 𝑖 are indeed homogeneous of degree 1 in 𝑒. ■

.4. Proof of Corollary 2

It is immediate if the competitive fringe has a lower endowment
𝑓 (𝑧) in state 𝑧, then it also consumes (weakly) less in state 𝑧. This
aises the price of the Arrow security referencing state 𝑧, 𝑞 (𝑧), and with
onvex marginal utility, the price impact in that market, 𝜇

𝑚𝑓
𝑞′ (𝑧). This

s because the Arrow price is equal to the fringe’s marginal utility in
hat state from Proposition 1.

Holding fixed the investment policies of strategic agents for the
oment, the rise in the asset price 𝑞 (𝑧) implies a larger gap between
𝑖 (𝑧) and 𝑞 (𝑧) for seller 𝑖, i.e., 𝛬𝑖 (𝑧) − 𝑞 (𝑧) = 𝜇

𝑚𝑓
𝑞′ (𝑧) 𝑎𝑖 (𝑧) from the

irst-order condition for 𝑎𝑖 (𝑧) in Lemma 1 becomes more negative. This
ay, however, involve more selling of securities 𝑎𝑖 (𝑧) despite the rise

n the price impact 𝜇
𝑚𝑓

𝑞′ (𝑧). This raises 𝑖’s investment wedge in state 𝑧

𝑖 (𝑧) =
𝜇
𝑚𝑓

𝑞′ (𝑧) 𝑎𝑖 (𝑧) in state 𝑧. From Lemma 1, this increase distorts
is investment choice further from its competitive choice of investment.

As such, there is more capital misallocation by sellers in Arrow
arket 𝑧. ■

.5. Proof of Corollary 3

First fix the capital investment of all agents, 𝑘𝑖, 𝑠𝑖 ∀ 𝑖, and con-
ider the competitive equilibrium in which 𝜇 = 0. Suppose we alter
gents’ production technologies to reduce productivity in states in
hich agents overlap in production and increase it in states in which

hey do not, such that total output in each state remains unchanged.
et the new productivities be indexed by

{

�̃�𝑖 (𝑧)
}𝑁
𝑖=1, and the new asset

ositions from retrading after the redistribution be 𝑎𝑖 (𝑧). For instance,
ith two agents and two states of production, we can shift productivity

o that agent 𝑖 now produces all output in state 1, 𝑦𝑖 (1) +
𝑘𝑖′
𝑘𝑖
𝑦𝑖′ (1), and

agent 𝑗 produces all output in states 2, 𝑦𝑖′ (2) +
𝑘𝑖
𝑘𝑖′

𝑦𝑖 (2).
Because agents can insure each other against states in which they

differ in production compared to states in which they jointly produce,
gains from trade increase in the economy. With perfect competition,
agents would trade until state prices are equalized, and consequently
the redistribution of productivity is irrelevant to the equilibrium con-
sumption allocation. The trading volume in their asset positions for
claims in state 𝑧 is then ∑𝑁

𝑖=1
|

|

�̃�𝑖 (𝑧) − 𝑎𝑖 (𝑧)||, where �̃�𝑖 (𝑧) = 𝑐1,𝑖 (𝑧) −
�̃�𝑖 (𝑧) 𝑘𝑖 − 𝑅𝑠𝑖 and 𝑐2,𝑖 (𝑧) is agent 𝑖′𝑠 consumption in the competitive
quilibrium.

Suppose instead agents are strategic. Because agents now inter-
alize their price impact, however, they ration their asset demands
nd supplies to tilt prices in their favor, 𝜕𝑞(𝑧)

𝜕𝐴(𝑧)𝛥𝑎𝑖 (𝑧) for a change in
position of 𝛥𝑎𝑖 (𝑧) = �̃�𝑖 (𝑧) − 𝑎𝑖 (𝑧), from manipulating prices. As such,
otal trading volume is bounded from above by ∑

𝑧∈
∑𝑁

𝑖=1
|

|

𝛥𝑎𝑖 (𝑧)||,

hich are positive related to total gains from trade. Because agents
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can always choose to trade fully their differences in risk exposures,
the distortions must be (weakly) larger with this increase in pure
agent-specific risk. ■

.6. Proof of Lemma 2

The claim is immediate from inspection of the first-order con-
ditions for strategic agent 𝑖’s optimal portfolios from Lemma 1. In
markets where 𝛬𝑖 (𝑧) > 𝑞 (𝑧) (i.e., a buyer), the wedge is positive,
𝜇
𝑚𝑓

𝑞′(𝑧)�̂�𝑗,𝑖 (𝑧) > 0. Similarly, in markets where 𝑖 is a seller, or 𝛬𝑖 (𝑧) <
(𝑧), then the wedge is negative, 𝜇

𝑚𝑓
𝑞′(𝑧)�̂�𝑗,𝑖 (𝑧) < 0. With declining

marginal utility, an agent has low state prices relative to asset prices
in states in which he has high output, and high state prices relative to
asset prices in states in which he has low output.

With perfect competition, all agents equate their state prices with
asset prices state-by-state. As such, the aforementioned wedges reflect
the consequences of price impact. ■

A.7. Proof of Proposition 2

Let 𝑘𝐶𝐸
𝑖 be the scale of the capital an agent would choose in the

ompetitive equilibrium without any price impact. Further, let 𝑘𝐴𝑢𝑡𝑖
be the scale of capital an agent would choose in autarky. Two forces
impact the choice of capital with price impact. The first is that all agents
are more exposed to their own production than in the competitive
environment because they trade less. This reduced risk sharing distorts
the investment choices of all agents toward their autarky values. The
second is that sellers sell less assets, which lowers their state prices rela-
tive to the competitive equilibrium, while buyers buy less assets, which
raises their state prices relative to it. This depresses the investment of
agents that are systematic sellers across security markets and raises the
investment of systematic buyers.

Suppose now agent 𝑖 chooses its capital such that 𝑘𝐶𝐸
𝑖 > 𝑘𝐴𝑢𝑡𝑖 . As a

result of impaired risk sharing, it chooses a lower scale of production in
the market equilibrium, converging to its autarky value when markets
are sufficiently concentrated. If instead 𝑘𝐶𝐸

𝑖 ≤ 𝑘𝐴𝑢𝑡𝑖 , then we have the
opposite result. The agent chooses a higher scale of production in the
market than in the competitive equilibrium, converging to its autarky
value when markets are sufficiently concentrated.

For the third part, because total risky investment eventually con-
verges to its autarky value, in which it is lower, for 𝜇 sufficiently large,
total risky investment declines relative to the competitive equilibrium
because of market concentration. Since price impact acts as an effective
tax on the joint production among agents, capital misallocation rises,
which lowers average productivity.

For the final part, if inefficient storage is used in the competitive
equilibrium in which agents perfectly share risk, then it is also used
in the market equilibrium and autarky. The converse, however, is not
true: if storage is employed under the market, it need not be employed
in the competitive equilibrium because the latter is efficient. As such,
storage is always (weakly) higher in the market than in the competitive
equilibrium. ■

A.8. Proof of Lemma 3

We define the market risk premium 𝑅𝑃𝑚𝑘𝑡 as 𝐸[∑𝑖 𝑦𝑖(𝑧)𝑘𝑖]
∑

𝑞(𝑧)
∑

𝑖 𝑦𝑖(𝑧)𝑘𝑖
− 𝑟𝑚.

Direct manipulation of the FOCs for optimal investment and asset
holdings in state 𝑧 from Lemma 1 reveals:
∑

𝑧∈
𝑞 (𝑧) 𝑦𝑖 (𝑧) 𝑘𝑖 =

∑

𝑧∈
𝑞 (𝑧)𝐸

[

𝑦𝑖 (𝑧) 𝑘𝑖
]

+ 𝐶𝑜𝑣
(

𝑞 (𝑧) , 𝑦𝑖 (𝑧) 𝑘𝑖
)

= 𝑘𝑖 −
𝜇
𝑚

∑

𝑞′ (𝑧) 𝑎𝑖 (𝑧) 𝑦𝑖 (𝑧) 𝑘𝑖, (A.19)
15

𝑓 𝑧∈
from which follows that:
𝐸
[
∑

𝑖 𝑦𝑖 (𝑧) 𝑘𝑖
]

∑

𝑧∈ 𝑞 (𝑧)
∑

𝑖 𝑦𝑖 (𝑧) 𝑘𝑖
− 1

∑

𝑧∈ 𝑞 (𝑧)

= −
𝐶𝑜𝑣

(

𝑞(𝑧)
∑

𝑞(𝑧) ,
∑

𝑖 𝑦𝑖 (𝑧) 𝑘𝑖
)

∑

𝑧∈ 𝑞 (𝑧)
∑

𝑖 𝑦𝑖 (𝑧) 𝑘𝑖

−
𝐶𝑜𝑣

(

𝑞(𝑧)
∑

𝑧∈ 𝑞(𝑧) ,
∑

𝑖 𝑦𝑖 (𝑧) 𝑘𝑖
)

∑

𝑖 𝑘𝑖 −
𝜇
𝑚𝑓

∑

𝑧∈ 𝑞′ (𝑧)
∑

𝑖 𝑎𝑖 (𝑧) 𝑦𝑖 (𝑧) 𝑘𝑖
. (A.20)

iven that 1
∑

𝑧∈ 𝑞(𝑧) is the inverse of the market-implied riskless rate 𝑟𝑚,
e arrive at the statement in the proposition. ■

.9. Proof of Proposition 3

Step 1: Asset prices compared a pseudo-competitive equilib-
ium

For now, let us fix all investment decisions from the market equi-
ibrium to be the investment decisions in the competitive equilib-
ium. We denote this pseudo-competitive equilibrium by the superscript
𝐸1. This is equivalent to assuming all agents are in an endowment
conomy. We will return to the impact of market concentration on
roduction in the sequel. We first consider the case in which agents
o not employ storage in the market equilibrium.

We start with the aggregated FOCs (12):

(𝑧) + 1
𝑁

𝜇
𝑚𝑓

𝑞′ (𝑧)𝐴 (𝑧) = E∗ [𝛬𝑖 (𝑧)
]

. (A.21)

onsider the net demand of strategic agents 𝐴 (𝑧). Suppose that net
emand is weakly greater than under the competitive equilibrium,
𝐶𝐸1 (𝑧), i.,e., 𝐴 (𝑧) ≥ 𝐴𝐶𝐸1 (𝑧) for all security markets. Then, because
(𝑧) = 𝜋(𝑧)𝑢′𝑓

(

𝑒2,𝑓 (𝑧) −
1
𝜇𝐴(𝑧)

)

from Proposition 1, it follows that
(𝑧) ≥ 𝑞𝐶𝐸1 (𝑧), and we are done.

We therefore focus on the case in which 𝐴 (𝑧) < 𝐴𝐶𝐸1 (𝑧) and
ttempt to establish a contradiction. Notice, if 𝐴 (𝑧) < 𝐴𝐶𝐸1 (𝑧), then
rom (A.21):

(𝑧) − 𝑞𝐶𝐸1 (𝑧) = E∗ [𝛬𝑖 (𝑧)
]

− 𝛬𝐶𝐸1 (𝑧) − 1
𝑁

𝜇
𝑚𝑓

𝑞′ (𝑧)𝐴 (𝑧) , (A.22)

here 𝐸∗ [𝛬𝐶𝐸1
𝑖 (𝑧)

]

= 𝛬𝐶𝐸1 (𝑧) because state prices are all aligned in
he competitive equilibrium (Lemma 1).

We now make use of Assumption 1 that the competitive fringe’s
rading positions in the competitive equilibrium satisfy 𝑎𝑓 (𝑧) ≥ 0,
hich implies by market-clearing (1) that 𝐴𝐶𝐸 (𝑧) ≤ 0. This conse-
uently also implies that 𝐴 (𝑧) < 𝐴𝐶𝐸 (𝑧) ≤ 0 given our focus on the case
n which 𝐴 (𝑧) < 𝐴𝐶𝐸 (𝑧). Imposing this observation in (A.22) implies:

(𝑧) − 𝑞𝐶𝐸1 (𝑧) ≥ E∗ [𝛬𝑖 (𝑧)
]

− 𝛬𝐶𝐸1 (𝑧) . (A.23)

Suppose all types are symmetric (i.e., productivity risk is such that
ll types face symmetric problems). Then all types make the same
nvestment decisions, 𝑘𝑖 = 𝑘 and 𝑠𝑖 = 𝑠, and total asset expenditures
𝑧∈ 𝑞 (𝑧) 𝑎 (𝑧). It is then apparent that initial consumption is the same,

1𝑖 = 𝑐1.
In this case, we can make use of the assumption that strategic agent

arginal utility 𝑢′ (⋅) is homothetic and strictly convex to apply Jensen’s
nequality:

∗ [𝛬𝑖 (𝑧)
]

= 𝜋 (𝑧)E∗
[

𝑢′
(

𝑐2𝑖 (𝑧)
𝑐1𝑖

)]

≥ 𝜋 (𝑧) 𝑢′
(

E∗
[

𝑐2𝑖 (𝑧)
𝑐1𝑖

])

. (A.24)

Since 𝑐1𝑖 = 𝑐1 is the same across all agents, (A.24) reduces to:

E∗ [𝛬𝑖 (𝑧)
]

≥ 𝜋 (𝑧) 𝑢′
⎛

⎜

⎜

⎝

1
𝑁

∑𝑁
𝑖=1 𝑐2𝑖 (𝑧)

𝑐1𝑖

⎞

⎟

⎟

⎠

= 𝜋 (𝑧) 𝑢′
(

∑𝑁
𝑖=1 𝑦𝑖 (𝑧) 𝑘 + 𝐴 (𝑧)

( )

)

, (A.25)

𝑁 (𝑒 − 𝑠 − 𝑘) + 𝑚𝑓 𝑒 − 𝑐1,𝑓
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because:

𝑁𝑐1 = 𝑁 (𝑒 − 𝑠 − 𝑘) + 𝑚𝑓
(

𝑒 − 𝑐1,𝑓
)

, (A.26)

by market clearing.
Since 𝐴 (𝑧) < 𝐴𝐶𝐸1 (𝑧), by assumption, we recognize that:
∑𝑁

𝑖=1 𝑦𝑖 (𝑧) 𝑘 + 𝐴 (𝑧)

𝑁 (𝑒 − 𝑠 − 𝑘) + 𝑚𝑓
(

𝑒 − 𝑐1,𝑓
) <

∑𝑁
𝑖=1 𝑦𝑖 (𝑧) 𝑘 + 𝐴𝐶𝐸1 (𝑧)

𝑁 (𝑒 − 𝑠 − 𝑘) + 𝑚𝑓

(

𝑒 − 𝑐𝐶𝐸1
1,𝑓

) , (A.27)

because 𝐴 (𝑧) < 𝐴𝐶𝐸1 (𝑧) also implies that resources are transferred
rom the second to the first period through asset purchases by the
ompetitive fringe.

Lemma characterizes state prices in the competitive equilibrium.

emma 4. State prices in the competitive equilibrium, 𝛬𝐶𝐸 (𝑧), satisfy:

𝛬𝐶𝐸 (𝑧) = 𝜋 (𝑧) 𝑢′
⎛

⎜

⎜

⎜

⎝

∑𝑁
𝑖=1 𝑦𝑖 (𝑧) 𝑘 + 𝐴𝐶𝐸 (𝑧)

𝑁 (𝑒 − 𝑠 − 𝑘) + 𝑚𝑓

(

𝑒 − 𝑐𝐶𝐸
1,𝑓 (𝑧)

)

⎞

⎟

⎟

⎟

⎠

. (A.28)

Given that marginal utility is decreasing in consumption growth
with homothetic preferences, Lemma 1 and (A.27) imply that:

E∗ [𝛬𝑖 (𝑧)
]

≥ 𝜋 (𝑧) 𝑢′
⎛

⎜

⎜

⎜

⎝

∑𝑁
𝑖=1 𝑦𝑖 (𝑧) 𝑘 + 𝐴𝐶𝐸1 (𝑧)

𝑁 (𝑒 − 𝑠 − 𝑘) + 𝑚𝑓

(

𝑒 − 𝑐𝐶𝐸1
1,𝑓

)

⎞

⎟

⎟

⎟

⎠

= 𝛬𝐶𝐸1 (𝑧) . (A.29)

Consequently, substituting (A.29) into (A.21) reveals:

(𝑧) ≥ 𝑞𝐶𝐸1 (𝑧) , (A.30)

which implies 𝐴 (𝑧) ≥ 𝐴𝐶𝐸1 (𝑧) from Proposition 1, which is a contra-
diction.

This establishes that asset prices are higher state-by-state compared
to a pseudo-competitive economy in which we fixed all investment
decisions to be the same as in the market equilibrium. This is true when
agents do not employ storage.

Suppose now agents employ storage. Since they are symmetric
across types, they either all will use storage or they all will not. For
an agent who uses storage, the sum of his state prices is fixed at 1

𝑅 , or
[

𝛬𝑖 (𝑧)
]

= 1
𝑅
∀𝑖 ∈ 1,… , 𝑁. (A.31)

Because only the sum of his state prices are constrained, state prices
still are higher by Jensen’s inequality. If all agents employ storage,
however, then the sum of all state prices is constrained, and so is
the cross-sectional average of the sum. Then, because average state
prices cannot all be higher than in the pseudo-competitive equilibrium,
the cross-sectional average must cease to change; otherwise, the sum
would exceed 1

𝑅 , a contradiction. In this case, the state prices of high
marginal utility states are higher while those of low marginal utility
states are lower, so that their sum is fixed at 1

𝑅 . Consequently, while
ll Arrow–Debreu prices initially rise with market concentration, those
f low marginal utility states start to fall when all agents employ stor-
ge. Although they fall, they remain elevated above their competitive
quilibrium.
Step 2: Asset prices compared to the competitive equilibrium
Since we established that state prices are (weakly) higher with mar-

et concentration than in an equivalent endowment economy with the
ame capital and savings decisions, what remains is for us to compare
he competitive equilibrium to this pseudo-competitive equilibrium
ith perfect risk sharing but the capital allocation decisions from the
arket equilibrium. Then, our claim will follow by transitivity.

It is immediate that the competitive equilibrium achieves the first-
est allocation by the first welfare theorem. The competitive equilib-
ium is consequently equivalent to solving the planner’s problem:

𝑈0 = sup
𝑁

E

[ 𝑁
∑

𝑢
(

𝑐1,𝑖
)

+ 𝑢
(

𝑐2,𝑖 (𝑧)
)

16

{𝑘𝑖 ,𝑠𝑖 ,𝑐1𝑖 ,𝑐2𝑖(𝑧)}𝑖=1 ,𝑠,𝑐𝑓1 ,𝑐2,𝑓 (𝑧) 𝑖=1
− 𝑐𝑓1 + 𝑢𝑓
(

𝑐2,𝑓 (𝑧)
)

]

(A.32)

.𝑡. ∶
𝑁
∑

𝑖=1
𝑐1,𝑖 + 𝑐𝑓1 + 𝑘𝑖 + 𝑠 = 𝑁𝑒 + 𝑚𝑓 𝑒,

∶
𝑁
∑

𝑖=1
𝑐2,𝑖 (𝑧) + 𝑚𝑓 𝑐2,𝑓 (𝑧) = 𝑚𝑓 𝑒2,𝑓 (𝑧) +

𝑁
∑

𝑖=1
𝑦𝑖 (𝑧) 𝑘𝑖 + 𝑅𝑠,

here 𝑠 is the aggregate storage.
The solution to this problem is characterized in Lemma 1, in which

here is a unique social state price 𝛬𝐶𝐸 (𝑧) that determines all consump-
ion sharing and production decisions. By construction, the distribution
f investment with market concentration can achieve no higher utility
han under the optimal centralized policy with the same resource con-
traint. As such, there exist improvements that (weakly) raise 𝑐2,𝑖 (𝑧) in
ll states by shifting investment away from less toward more productive
echnologies

From Proposition 2, agents that would invest in capital in the first-
est under-invest in the noncompetitive economy because of strategic
rictions, while those that do not invest may start to invest because
f diminished opportunities to finance the production of other agents.
or the same resources transferred intertemporally, ∑𝑁

𝑖=1 𝑒 − 𝑐1,𝑖, the
irst-best employs more efficient technologies without cross-sectional
isallocation. As such, while some agents may under-invest and others

ver-invest with price impact, aggregate investment and investment
fficiency falls. As such, state prices are (weakly) higher in all states
n the pseudo-competitive equilibrium.

Finally, we consider the role of storage. If storage is used in the com-
etitive equilibrium, then it is also employed in the market equilibrium,
lthough the converse need not be true. When storage is employed by
ll agents, then the sum of their state prices is constrained to be 1

𝑅 . As
such, since capital allocation is less efficient in the market equilibrium,
and the sum of state prices is constrained, it follows that prices increase
for high marginal utility and decrease for lower marginal utility states
to leave the average unchanged. If there is storage in the competitive
equilibrium, then this effect is there for all 𝜇, otherwise it becomes
operative once all agents employ storage. It then follows that:

𝛬𝐶𝐸1 (𝑧) ≥ 𝛬𝐶𝐸 (𝑧) , (A.33)

s required.
Step 3: Risk-free rate
The second part of the claim follows directly from Steps 1 and 2.

ecause 𝑞 (𝑧) is higher state-by-state than in the competitive equilib-
ium, it follows that ∑

𝑧∈ 𝑞 (𝑧) is also larger than in the competitive
quilibrium. Because 𝑟𝑚𝑓 is the inverse of the sum of the state prices,
he claim then follows. Moreover, 𝑟𝑚𝑓 ≥ 𝑅 because storage can be traded
ithout market impact.

The floor of 𝑟∗𝑓 is also 𝑅 because, from the FOCs in Lemma 1, if there
is storage, then 𝐸

[

𝑢′2
( 𝑐2,𝑖(𝑧)

𝑐1,𝑖

)]

= 1
𝑅 . To see that this is a lower bound, a

necessary condition that agent 𝑖 to invest in capital in its production
echnology is 𝐸

[

𝑦𝑖 (𝑧)
]

> 𝑅, with the strict inequality necessary to
mbed a risk premium for the agent. Consequently, as long as agent 𝑖
olds storage, then 𝐸

[

𝑢′2
( 𝑐2,𝑖(𝑧)

𝑐1,𝑖

)]

= 1
𝑅 , and only once it exhausts all its

resources in state contingent claims and capital, then 𝐸
[

𝑢′2
( 𝑐2,𝑖(𝑧)

𝑐1,𝑖

)]

<
1
𝑅 . Because this holds for all agents, it follows that 𝑟∗ ≥ 𝑅.
Step 4: Market risk premium
In the special case in which strategic agents are symmetric across

types, all types choose the same level of capital, 𝑘𝑖 = 𝑘, and the market
risk premium (13) reduces to:

𝑅𝑃𝑚𝑘𝑡 =
𝐸
[
∑

𝑖 𝑦𝑖 (𝑧)
]

∑

𝑧∈ 𝑞 (𝑧)
∑

𝑖 𝑦𝑖 (𝑧)
− 𝑟𝑓𝑚

=
∑

𝑧∈ 𝑞 (𝑧)𝐸
[
∑

𝑖 𝑦𝑖 (𝑧)
]

−
∑

𝑧∈ 𝑞 (𝑧)
∑

𝑖 𝑦𝑖 (𝑧)
∑ ∑
𝑧∈ 𝑞 (𝑧) 𝑖 𝑦𝑖 (𝑧)
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= −𝑟𝑓𝑚
𝐶𝑜𝑣

[

𝑞 (𝑧) ,
∑

𝑖 𝑦𝑖 (𝑧)
]

𝐸
[

𝑞 (𝑧)
∑

𝑖 𝑦𝑖 (𝑧)
] . (A.34)

It is immediate that the market-implied risk-free rate 𝑟𝑚 is lower from
Step 3 and that asset prices 𝑞 (𝑧) are higher in the denominator in
the market compared to the competitive equilibrium (from Step 2). In
addition, and more subtle, is that the covariance between state prices
and aggregate productivity, 𝐶𝑜𝑣

[

𝑞 (𝑧) ,
∑

𝑖 𝑦𝑖 (𝑧)
]

< 0, is less negative
because all asset prices are inflated to reflect market concentration
beyond underlying risk. Consequently, the market risk premium is
lower in this special case. ■

A.10. Proof of Lemma 4

In this lemma, we characterize the competitive equilibrium without
market concentration. The standard first-order conditions for opti-
mal consumption and asset holdings align state prices for all agents
state-by-state:

𝑞 (𝑧) =
𝜋 (𝑧) 𝑢′

(

𝑐2𝑖 (𝑧)
)

𝑢′
(

𝑐1𝑖
) = 𝜋 (𝑧) 𝑢′𝑓

(

𝑐2,𝑓 (𝑧)
)

= 𝛬𝐶𝐸 (𝑧) , (A.35)

which implies for the 𝑁 types of agents with homothetic preferences:

𝑐2𝑖 (𝑧)
𝑐1𝑖

=
𝑐2𝑗 (𝑧)
𝑐1𝑗

= 𝜂 (𝑧) , (A.36)

and for the competitive fringe:

𝑐2,𝑓 (𝑧) = 𝜂𝑓 (𝑧) = 𝑢−1𝑓
(

𝑢′ (𝜂 (𝑧))
)

. (A.37)

The first-order conditions for investment and savings are the same as
with imperfect competition in financial markets.

Substituting for date 2 consumption into the budget constraint at
date 1, the inter-temporal budget constraint for agents of type 𝑖 is:

𝑐1𝑖 + 𝑘𝑖 + 𝑠𝑖 +
∑

𝑧∈𝑍
𝑞 (𝑧) 𝑐2𝑖 (𝑧) = 𝑒 +

∑

𝑧∈𝑍
𝑞 (𝑧)

(

𝑦𝑖 (𝑧) 𝑘𝑖 + 𝑅𝑠𝑖
)

. (A.38)

Substituting the first-order conditions for 𝑘𝑖 and 𝑠𝑖 into (A.38), we
arrive at:

𝑐1,𝑖 +
∑

𝑧∈𝑍
𝑞 (𝑧) 𝑐2𝑖 (𝑧) = 𝑒. (A.39)

Finally, substituting 𝑐2𝑖(𝑧)
𝑐1𝑖

= 𝜂 (𝑧) from (A.36) into (A.39), and recogniz-
ing 𝑞 (𝑧) = 𝜋 (𝑧) 𝑢′ (𝜂 (𝑧)), we find that:

𝑐1𝑖 =
𝑒

1 +
∑

𝑧∈𝑍 𝜋 (𝑧) 𝑢′ (𝜂 (𝑧)) 𝜂 (𝑧)
, (A.40)

and therefore:

𝑐2𝑖 (𝑧) =
𝜂 (𝑧) 𝑒

∑ , (A.41)
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1 + 𝑧∈𝑍 𝜋 (𝑧) 𝑢′ (𝜂 (𝑧)) 𝜂 (𝑧)
Consequently, strategic agents consume in proportion to their initial
endowments. Notice that this implies that:
∑𝑁

𝑖=1 𝑐2𝑖 (𝑧)
∑𝑁

𝑖=1 𝑐1𝑖
= 𝜂 (𝑧) . (A.42)

Consider the type-symmetric case in which all agents have the same
initial wealth 𝑒. Substituting the market clearing conditions at both
dates into (A.42), and equating 𝜂 (𝑧) with consumption growth in (A.35)
and state prices in (A.36), we arrive at:

𝛬𝐶𝐸 (𝑧) = 𝜋 (𝑧) 𝑢′
⎛

⎜

⎜

⎜

⎝

∑𝑁
𝑖=1 𝑦𝑖 (𝑧) 𝑘 + 𝐴𝐶𝐸 (𝑧)

𝑁 (𝑒 − 𝑠 − 𝑘) + 𝑚𝑓

(

𝑒 − 𝑐𝐶𝐸
𝑓,1

)

⎞

⎟

⎟

⎟

⎠

. ■ (A.43)

Appendix B. Data sources

In this Appendix, we discuss the data we use in Section 4. Our
data come from three main sources. We measure risk-free rates using
data on nominal rates on 1-year Treasury bills from the St. Louis Fed
FRED database. Specifically, we use data series RIFSGFSY01NA (1-
Year Treasury Bill Secondary Market Rate, Discount Basis, Percent,
Annual, Not Seasonally Adjusted). This series shows values of 1.67%
on 01/01/2002, and 0.6% on 01/01/2016. In Fig. B.1, we plot the
data. Because there are missing values for the 1-year bill, we also plot
6-month bill rates in blue.

Data on corporate discount rates and weighted average cost of cap-
ital are from Gormsen and Huber (2022), who make data available at
www.costofcapital.org. We use raw averages of annual rates. Data were
retrieved on June 28, 2023. In our model, we refer to the ‘‘perceived
cost of capital’’ of Gormsen and Huber (2022) as the working average
cost of capital (WACC), and to the hurdle rate as the discount rate.
Fig. B.2 shows the data series we use to calibrate our model.

We obtain data on firm-level dispersion using the interquartile range
of firm-level total factor productivity (TFP) from Figure 4, Panel b
of Cunningham et al. (2022). We thank the authors for sharing the
underlying data. Our focus is on the years 2002 and 2016. Because of
year-to-year variation in estimated TFP, directly comparing these two
years masks the underlying trend in dispersion over time. We there-
fore compute linear trends and calibrate to one half of the difference
between the linear trend in the 75th percentile and the linear trend in
the 25th percentile (see Fig. B.3).

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jfineco.2024.103875.
Fig. B.1. Interest rate data.

http://www.costofcapital.org
https://doi.org/10.1016/j.jfineco.2024.103875
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Fig. B.2. Data on cost of capital and discount rates.

Fig. B.3. Interquartile range of firm-level TFP. Raw data are plotted in solid lines,
linear trend is plotted in dashed lines.
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