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Introduction

• Influential literature on the structural estimation of demand functions for financial assets.

• The typical object of interest is the asset-level price elasticity of demand

Ejk = −∂aj(~a−j , ~p)

∂pk
× pk

aj(~a−j , ~p)
.

• Most commonly estimated using suitably exogenous supply shocks: mandates, constraints, policies. . ..

• Structural perspective: of interest to the extent that it reveals deep parameters or properties.
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Two questions

1. Are asset-level demand elasticities “useful” objects of analysis for asset demand systems?

Which specific thought experiments and/or structural parameters do they map to?

2. When can asset-level elasticities be identified from observational data?

Do asset-level supply shocks generate the “right” price variation in equilibrium settings?
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A trilemma for observational data

Elasticities are not well-defined and/or cannot be identified if the following conditions jointly hold:

(i) preferences are at least in part defined over cash flows rather than assets.

(ii) prices satisfy no arbitrage.

(iii) identifying variation is based on asset-level supply shocks.

Tension: cross-asset restrictions from (i) and (ii) run counter to basic concept of a demand elasticity.

Exception: the asset menu consists of Arrow securities (for which portfolio restrictions are immaterial).
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Framework

• Two dates, t = 0, 1. At date 1, one of Z states of the world is realized.

• Investor i has utility function ui defined over consumption at date 0 and date 1

• Can invest in J assets.

• yj(z) ≥ 0 is the payoff of asset j in state z . Y is the J × Z payoff matrix.

• Investor i ’s endowment of asset j is e ij . Aggregate endowment is Ej .

• p: the vector of asset prices.

• q: vector of state prices (need not be unique).
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Minimal properties

Assume: state price qz is strictly decreasing in the aggregate endowment of state z consumption.

⇒ Let Yj denote the j-th row of Y . There exists some strictly positive matrix U such that

∂q

∂Ej
= −UYj .

In standard settings, this is guaranteed by strictly concave utility over consumption.

Assume: Prices satisfy no arbitrage, p = Yq.
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Conceptual considerations



The fundamental challenge

Portfolio choice is built on the idea that investors care about consumption, not assets per sé.

Consequences:

1. Deep preference parameters are only indirectly linked to observable asset positions and prices:

state prices = H(asset prices) and consumption = G(asset positions)

2. Portfolio choice problems require restrictions on relative asset prices (i.e., no arbitrage).

Theoretical notions of demand elasticities and identification strategies must reckon with these effects.
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A simple representation (in complete markets)

Treat c0 as the numeraire. Given observed asset prices, each investor solves a three-step problem:

1. Invert payoff matrix Y to determine state prices q:

q = Y−1p

2. Find the optimal consumption plan c i (q) as a function of state prices q:

max
(c i0,(c

i
z )z )

(1− δ) · ui (c i0) + δ

Z∑
z=1

πz · ui (c iz)

s.t. c i0 +
Z∑

z=1

qzc
i
z = W i and W i ≡ e i0 +

Z∑
z=1

qz

(
J∑

j=1

yj(z)e ij

)
.

3. Implement the consumption plan by bundling assets together, ai = G−1(c i ).
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What about incomplete markets?

Same basic problem, except q is not unique and we have constraints on feasible consumption plans.

Not central to our arguments, except for extreme forms of incompleteness.
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An elasticity is a thought experiment

The demand elasticity is based on a thought experiment:

“ What would an investor do if a single asset price pj changes but all other asset prices remain fixed?”

In principle, this experiment can be well-defined in the theory:

1. Figure out the state price changes induced by the price shock:

∂q

∂pj
=
(
Y−1

)
j

2. Figure out the desired change in the optimal consumption plan given new state prices.

3. Compute the percentage change in implied asset-level holdings given new consumption plan.
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The role of no arbitrage

1. If the single price change triggers an arbitrage, the decision problem is not well-defined.

2. If we require no arbitrage, it may not be feasible to hold all other prices fixed.

We must vary state prices, which can in turn affect other asset prices
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No arbitrage versus ceteris paribus

Proposition 1. If no arbitrage holds, then a shock to the price of asset j does not imply a change to

the price of some other asset iff there exists a z such that yj(z) > 0 and yk(z) = 0 for all k 6= j .

⇒ Ceteris paribus condition cannot hold unless assets have unique exposures to priced risks.

Implication. Demand elasticities are consistent with NA only under stringent conditions:

(i) If markets are complete and no redundant assets, Y must be diagonal (up to permutation).

(ii) If markets are incomplete, Y must include a diagonal matrix (up to permutation).

For redundant assets, individual price changes directly trigger arbitrages.
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Identification from observational data



Required versus equilibrium price variation

The demand elasticity presupposes a specific vector of state price changes, say ∆qDE (from before).

Under equilibrium play, supply shocks induce their own vector of state price changes, say ∆qSS .

To identify the asset-level elasticity based on supply variation, these should be proportional.

1. Under which conditions is ∆qDE proportional to ∆qSS?

2. When are they of the same sign?
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Do supply shocks create the right state price variation?

Proposition 2. ∆qSS = k ·∆qDE only if the payoff matrix is the identity matrix, Y = I.

“Proof.” Effects of supply shock proportional to Y , hypothetical price variation proportional to Y−1.

Proposition 3. With complete markets, sign(−∆qSS) = sign(∆qDE ) iff Y = I.

Incomplete markets work similarly: require Y to include a diagonal matrix up to permutation.

Proof. Plemmons and Cline (PAMS, 1972).
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Example: A simple equilibrium economy

• Representative investor with log utility. No discounting. Date-0 endowment equal to 1.

• Two equally likely states and two assets: j , z ∈ {g , r}. Aggregate supply Eg = 1 + sg and Er = 1.

State g State r

Asset g 1
2

(1 + ε) 1
2

(1− ε)

Asset r 1
2

(1− ε) 1
2

(1 + ε)

• Standard optimality condition shows that we need to get relative state prices right:

qz =
1

2

c0
cz

⇒ cr
cg

=
qg
qr
.
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∆qDE : State price changes given a hypothetical asset price change

We can back out implied state prices from asset prices:qg

qr

 =
1

8ε

 (1 + ε)pg − (1− ε)pr

−(1− ε)pg + (1 + ε)pr

 .

In the thought experiment where we vary pg exogenously, induced state price changes are

∂

∂pg

qg

qr

 =
1

4ε

 1 + ε

−(1− ε)

 .

For any ε < 1, the green state becomes expensive and the red state becomes cheap.
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∆qSS : Equilibrium state prices and supply shocks

Impose market clearing. Then equilibrium state prices satisfy

q∗
g (sg ) =

1

2
· 1

1 +
sg
2

(1 + ε)
and q∗

r (sg ) =
1

2
· 1

1 +
sg
2

(1− ε)
.

For any ε < 1, both state prices are decreasing in green supply sg . Hence one is of the wrong sign.

(Only exception is ε = 1, in which case we recover Arrow securities.)
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Optimal investor-level change in consumption ratio cg/cr (log scale)
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(Preliminary) conclusions

Central properties of asset pricing model imply challenges for asset-level demand estimation:

(i) no arbitrage, (ii) preferences over cash flows, and (iii) variation based on supply shocks.

Potential remedies:

1. Certain assets may not be vulnerable to these issues. Can check this using the payoff matrix.

2. Constraints may help to solve the bundling issue (by analogy to “standard” IO).

3. Control variables can make the payoff matrix more diagonal (but also change the estimand).

4. Many supply shocks can help. But this requires strong stationarity (e.g., recovery theorems).

5. If you observe the demand curve, you don’t need supply shocks. (e.g., Allen, Kastl and Wittwer).

6. . . .
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