*

A Trilemma for Asset Demand Estimation

Preliminary. Most recent version.

William Fuchs' Satoshi Fukuda? Daniel Neuhann®

July 17, 2025

Abstract

Canonical portfolio choice models require no arbitrage to ensure the existence of
smooth, low-dimensional asset demand functions that are amenable to demand es-
timation. But because no arbitrage imposes cross-asset restrictions on prices, supply
shocks generically fail to generate the ceteris paribus price variation required to iden-
tify asset-level demand elasticities. This yields a trilemma for demand estimation in
financial markets: given observational data, one cannot jointly require (i) no arbitrage,
(ii) preferences over state-contingent payoffs, and (iii) ceteris paribus variation from
asset-level supply shocks. Because the ideal experiment is unobservable, model-based

inference is necessarily sensitive to the assumed structure.
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1 Introduction

The availability of granular portfolio data has fueled a wave of new research estimating
demand functions for financial assets. Drawing on methods from industrial organization,
much of this literature uses supply shocks to measure asset-level demand elasticities, and
interprets the resulting coefficients as the slopes of asset-specific demand functions. This
interpretation is valid if the estimation strategy accurately identifies the demand response
to exogenous variation in a single asset price, holding all else fixed. Conversely, if the demand
response is contaminated by other simultaneous price changes, then the estimated elas-
ticities do not correspond to asset-specific demand functions, and thus may not reflect
structural responses to counterfactual price changes.

We argue that violations of the ceteris paribus assumptions are endemic to financial
markets even given perfectly exogenous shocks to asset supply. Because investors opti-
mize over portfolios, asset prices are tied together through a common pricing kernel and
the principle of no arbitrage. Except in very restrictive special cases, this makes it infeasi-
ble to vary the price of a single asset without inducing other concurrent price changes.

We formalize this problem as a trilemma for asset demand estimation: given obser-
vational data, one cannot simultaneously require (i) no arbitrage, (ii) investor preferences
over state-contingent payoffs, and (iii) ceteris paribus price variation from asset-level sup-
ply shocks. That is, given standard preferences and the weak requirement of no arbitrage,
the ideal experiment which would identify an asset-level demand elasticity is infeasible.

Neither no arbitrage nor payoff-based preferences are easily discarded. Prefer-
ences over payoffs (as opposed to direct preferences over assets) form the basis of portfo-
lio choice theory. Given such preferences, no arbitrage is necessary to ensure the existence
of smooth demand functions that do not jump discontinuously in response to small price
changes — as is required for demand estimation. Empirical applications also rely on no
arbitrage to derive empirically tractable demand systems based on a small number of
common characteristics and risk factors (Koijen and Yogo, 2019). This dimension reduc-
tion is necessary because asset markets may have hundreds or thousands of assets.

The problem becomes clear when we write asset prices in terms of state prices,

which measure the cost of state-contingent consumption. Let p be the vector of asset



prices, Y the payoff matrix, and g the vector of state prices. Arbitrage free pricing requires

p =Yy

Now consider the canonical notion of an asset-level demand elasticity. This object
corresponds to an ideal experiment in which we vary the price of a single asset j while
holding all other prices fixed. Under no arbitrage, a shock to a single asset price implies
a specific set of state price changes. For simplicity, assume for now that markets are
complete and that there are no redundant assets. Then state prices are related to asset

prices by g = Y~1p, and a shock to a given asset price affects state prices according to

The ideal experiment in which we exogenously vary a single asset price can be
equivalently interpreted as an experiment in which we induce a specific set of state price
changes that are fully characterized by the inverse payoff matrix Y~!. Measuring the elas-
ticity thus requires researchers to generate precisely these implied state price changes.

This presents a fundamental challenge. Under standard risk averse preference,
an increase in the supply of state-contingent consumption in a given state reduces the
associated state price. Asset-level supply shocks thus alter state prices in all states in
which the asset pays off, and these state price changes are proportional to payoff matrix
Y. Except in the knife-edge case where Y is diagonal (i.e., assets are Arrow securities), the
state price variation induced by supply shocks thus differs from the state price variation
in the ideal experiment, which is proportional to Y~!. Indeed, they may not even have
the same sign. Hence individual asset-level supply shocks generically fail to generate the
ideal experiment that would allow for direct identification of the demand elasticity.

In principle, one might be able to construct the price variation required for the ideal
experiment by combining multiple exogenous asset-level shocks. But because the optimal
weights on individual asset-level shocks depend on asset payoffs, doing so is infeasible
without ex-ante knowledge of the (unobservable) payoff matrix. To make progress, re-
searchers must therefore place assumptions on the payoff matrix. Since financial markets
allow for rapid demand responses to price changes, even minor misspecifications can

have large impacts on estimated elasticities (Fuchs, Fukuda, and Neuhann, 2025b,c).



We formalize our argument in a general portfolio choice model, showing that it
also generalizes to the case of incomplete markets and redundant assets. In the case of
incomplete markets, supply shocks create appropriate state price variation only if for each
state, there is a unique asset with a positive payoff. This is a much stronger condition than
requiring assets to be uncorrelated conditional on risk factors, as is assumed in Koijen
and Yogo (2019). We also use a two-asset example to describe how the direction and mag-
nitude of the implied consumption shifts diverge between the ideal experiment and the
actual equilibrium allocation. Across both complete and incomplete markets, the results
reveal a robust obstacle to estimating asset-specific elasticities using supply shocks.

While we emphasize the disconnect between supply shocks and the ideal experi-
ment, we stress that structural assumptions (e.g., on payoffs, preferences, or the pricing
kernel) can in principle allow researchers to recover demand elasticities from equilibrium
data. However, these assumptions are inherently untestable in observational data be-
cause the required ceteris paribus price variation is never observed. Thus, the credibility
of model-based elasticity estimates depends on the plausibility of the assumed structure.

The remainder of the paper is organized as follows. Section 2 introduces the model
and defines the key objects of interest. Section 3 clarifies the link between demand func-
tions and no arbitrage in the context of our framework. Section 4 formalizes the inconsis-
tency between arbitrage, state prices, and asset-level elasticities. Section 5 illustrates the
logic using a fully-solved general equilibrium model. Section 6 discusses implications for

estimation and provides concluding remarks. The proofs are delegated to the Appendix.

Related literature

Our paper contributes to a growing literature on asset demand estimation, particularly
the empirical study of asset-level demand elasticities following Koijen and Yogo (2019).
Their framework — and much subsequent work — relies on the interpretation that changes
in asset prices induced by supply shocks can be used to infer structural demand elas-
ticities. However, while Koijen and Yogo (2019) explicitly rely on a structural model to
discipline demand estimation, other authors pursue more reduced-form strategies — see
for example van der Beck (2021). Our key result is that the same no arbitrage restrictions
which facilitate smooth, low-dimensional demand functions also complicate the measure-

ment of demand elasticities based on supply shocks, at least in observational data. The



reason is that cross-price linkages render it infeasible to observe the ideal experiment
where only a single asset price moves in response to an exogenous shock.

While these considerations are critical for financial markets, they are less central in
other settings. In the canonical industrial organization framework (see Berry and Haile
(2021) for a review), a shock to the supply of apples might affect the price of bananas,
but assuming banana prices are fixed does not undermine the validity of the consumer
problem. In financial markets, instead, the analogous assumption dramatically alters ba-
sic properties of demand and market equilibrium. The crucial difference is that financial
assets are not consumption goods; they are claims to bundles of state-contingent payoffs.
Thus, if investor preferences pertain to state-contingent wealth or consumption, their de-
mand functions pertain to asset portfolios that jointly deliver a desired payoff process, not
to individual assets per se. For the resulting demand functions to be well-behaved, we
must impose restrictions that rule out arbitrage opportunities.

There are a number of potential paths to circumventing the issues we raise. The
tirst is to restrict attention to settings where one can estimate demand even without sup-
ply variation. This typically requires additional data on demand functions, as in the Cana-
dian bond market studied by Allen, Kastl, and Wittwer (2025). The second is to abandon
no arbitrage. As discussed above, this makes it more difficult to reduce the dimensional-
ity of the portfolio choice problem, and therefore likely limits the scope of asset demand
estimation to settings with a limited number of assets. The third is to assume that prefer-
ences are defined directly over assets (as opposed to state-contingent payoffs), for exam-
ple because investors have non-pecuniary tastes over assets. Because preferences are not
defined over cash flows, there is no need to worry about cross-asset spillovers through
the common pricing of cash flows. However, Fuchs, Fukuda, and Neuhann (2025a) show
that heterogeneous tastes may also invalidate no arbitrage pricing.

The fourth is to change the target of estimation, possibly under additional assump-
tions. One example is in Haddad, He, Huebner, Kondor, and Loualiche (2025), who show
that a difference-in-difference estimator based on a single supply shock can identify a rel-
ative elasticity (the own minus cross-price elasticities) under a set of stringent symmetry
assumptions. Another example is An and Huber (2024), who propose measuring de-
mand elasticities over aggregated factor portfolios (as opposed to individual assets). Our

results here suggest that these factors must be designed to generate a diagonal payoff ma-



trix. This is a stricter requirement than just requiring factors to be mutually orthogonal.
Moreover, constructing exogenous supply variation at the portfolio level from asset-level
shocks typically requires knowledge of the payoff matrix, which is a latent variable.!
Overall, our results suggest an important role for model-based inference in as-
set markets. When the ideal experiment is infeasible, restrictions imposed by structural
models allow researchers to learn about investor behavior from equilibrium data. This in-
terpretation supports the general approach laid out in Koijen and Yogo (2019). However,
because these restrictions can never be fully validated in the data, the assumed models
must be plausible ex-ante. Fuchs, Fukuda, and Neuhann (2025a) argue that logit demand

systems do not sufficiently account for cross-asset interactions in portfolio choice.

2 Setup

We consider a canonical model with a set I of potentially heterogeneous investors. Each
investor i € I must choose how much to consume at date 0 and across Z states of the
world at date 1. To acquire a desired state-contingent consumption profile, the investor

can invest in | assets. Investor i’s portfolio is a vector a' = (ai)] € R/ of asset positions,

i/ j=1
where each element a;: denotes the investor’s holdings of as;e]t j- Asset j has payoff y;(z)
in state z. We denote by Y = (y;(z));. the ] x Z matrix of cash flows. In line with the
literature, we assume that the payoff matrix is known to the investor but unobserved by
the econometrician. This is because the payoff matrix reflects expected returns, which is
latent. Prices are observed by both the investor and the econometrician.
We treat time-zero consumption as the numeraire good (or, equivalently, as the
outside asset) whose price is normalized to 1. Investor i is endowed with e;. units of asset j

and e units of the numeraire. The budget constraints at date 0 and in state z are given by
, - J .
co=rey— ) pja;—¢) and
j=1

- .
cy, = Eyj(z)a} for all z.
=1

IConstructing a diagonal payoff matrix will typically require forming long-short portfolios. See An
(2025) for an analysis of demand elasticities for long-short portfolios.



Each investor i has standard preferences over consumption given by
. . . . . . Z . .
U'(a') = (1—68)u'(ch) +06" Y mau'(ch),
z=1

where &' € (0,1) is the discount factor, u’ is a strictly increasing and strictly concave

von-Neumann Morgenstern utility function, and 7, € (0, 1) is the probability of state z.
Investors may face constraints on portfolio formation beyond the budget con-

straint. Let A’ denote the set of feasible portfolios of investor i, and assume that Al is

a closed convex subset of R/. The investor’s decision problem is:

sup U'(a'). (1)
ale Al
When necessary, we close the model using the standard notion of competitive equi-

librium, whereby investors form optimal portfolios given prices and asset markets clear.

3 The Importance of No Arbitrage for Demand Analysis

Demand analysis in financial markets faces two basic challenges. The first is the large
number of assets under consideration. For example, in US equities markets alone, in-
vestors can choose among many thousands of assets, which creates a curse of dimension-
ality in demand estimation. The second is that demand functions must be sufficiently
well-behaved. For example, demand elasticities are partial derivatives of demand with
respect to an asset price. Hence the demand elasticity can be used to describe demand
only if demand functions are smooth functions of asset prices.

Both challenges can be addressed by relying on the principle of no arbitrage. With
respect to the first challenge, Koijen and Yogo (2019) implicitly rely on Ross’s arbitrage
pricing theory to argue that asset demand can be summarized by a relatively small num-
ber of asset characteristics and common risk factors, leading to a low-dimensional repre-
sentation. (We leave aside here the concern that several common characteristics, such as
book-to-market ratios, are themselves endogenous to demand.) With respect to the sec-
ond challenge, it is well-established that arbitrage opportunities can lead to discontinuous
changes in demand functions with respect to arbitrarily small price changes. Imposing no

arbitrage rules out such discontinuities, thereby facilitating an analysis of demand elastic-



ities. For demand analysis, no arbitrage is thus not only a constraint on equilibrium prices,
but an important restriction on investors” decision problems themselves.

In the following, we briefly recapitulate the link between demand functions and no
arbitrage in the context of our model. Since much of the empirical literature emphasizes
institutional investors’ constraints on portfolio choice when designing instruments, we
explicitly incorporate these into our analysis as well. We also establish the standard result
that no arbitrage allows for an analysis of asset prices (and thus demand) using state prices.

To this end, we begin by defining unbounded arbitrage opportunities as those that
can be exploited using arbitrarily large asset positions. Standard definitions of arbitrage
always consider unbounded arbitrage opportunities (Duffie, 2001). Hence this definition

differs only in that we permit bounded arbitrages. (We discuss this case below.)

Definition 1 (No Unbounded Arbitrage for Investor i) Investor i has an unbounded arbi-
trage opportunity if, for any m > 0, there exists a portfolio a' € A’ such that either (i) p - a* < 0,
YTal > 0, and (YTai)Z > m for some z or (ii) p - at < —mand YTa' > 0. Otherwise, investor i

has no unbounded arbitrage opportunity.

Proposition 1 shows that well-defined decision problem requires the absence of
unbounded arbitrage opportunities. The simple reason is that unbounded arbitrage pre-
cludes the existence of a solution to the investor’s problem. Hence the absence of un-
bounded arbitrage is thus a minimal requirement for any analysis of investor demand

functions. This is a well-known result based on textbook treatments (e.g, Duftie, 2001).

Proposition 1 (Duffie (2001): No arbitrage and the investor’s problem) If there is a solu-
tion to (1), then investor i has no unbounded arbitrage opportunity. If U' is continuous and

investor i has no unbounded arbitrage opportunity, then there is a solution to (1).

Proof. See Appendix. m

Under weak additional assumptions, asset prices and demand can then be ana-
lyzed using state prices, which measure the marginal cost of a unit of state-contingent
consumption. In particular, if the union of investors’ feasible sets covers the entire space
of feasible portfolios IR/, the absence of unbounded arbitrage implies the existence of state

prices such asset prices are payoff-weighted sums of state prices.



Lemma 1 (Existence of state prices) If there exists a subset Iy of investors such that every in-
vestor i € Iy does not have an unbounded arbitrage opportunity and R/ = (J;¢ Io Al, then there

exist state prices g € R% , such that asset prices are payoff~weighted sums of state vrices:
p q ++ p pay 8 p

p=Yq. ()

Taken together, these results show that the absence of unbounded arbitrage is re-
quired for well-defined demand functions, and that, along with a weak condition on
portfolio constraints, it implies the existence of strictly positive state prices. Hence we
can recast both the interpretation and measurement of demand elasticities in terms of the
cost of state-contingent consumption. This is useful because, given preferences over con-

sumption, asset prices affect consumption plans to the extent that they affect state prices.

Bounded arbitrage. The same basic consideration apply to bounded arbitrage, whereby
investors can only exploit mispricing up to an exogenous constraint on asset positions. In
particular, it remains optimal to exploit the arbitrage to the extent possible, and, as the
example below illustrates, this can lead to discontinuous changes in demand in response

to arbitrarily small price changes.

Example 1 (Discontinuous demand functions) Suppose there are two states of the world at

date 1, and three assets. Given some € € (0, %), let a cash flow matrix Y be given by

N[—= N[—
-+
o m
N[—= N[—=
-+
o m

Now consider the demand functions for some investor i with continuous utility function U'.

(i) Suppose A' = R3. The absence of unbounded arbitrage requires that p3 = p1 + pa. Given
this restriction on prices, well-defined demand functions exist for all three assets, with the
investor taking weakly positive quantities in all three assets. Now suppose that, starting from
an initial benchmark where no arbitrage pricing holds, p3 increases slightly. Then, investor

i’s problem (1) is no longer well-defined, and well-defined demand functions no longer exist.

(i) Suppose instead that investor i faces the short-sale constraint a;: > —x for some x > 0.

Given p3 = p1 + pa, well-defined demand functions still exist for all three assets, with the

8



investor taking weakly positive quantities in all three assets. Now suppose that p3 increases
slightly. Then it is optimal for the investor to jump to a portfolio allocation where a3 = —x.

This can trigger discontinuities in optimal demand.

It is clear that such discontinuities prevent an analysis of demand elasticities. Since
any infinitesimal price change triggers an arbitrage for redundant assets, for the remain-

der we focus on the more interesting case without redundant assets.

Assumption 1 (No redundant assets) Z > ] and rank(Y) = |.

4 The Trilemma

We now turn to our main result, which pertains to the difficulty in measuring demand
elasticities for individual assets in settings governed by no arbitrage restrictions. In line
with the literature, we focus primarily on the case where the demand elasticity for a given
asset is estimated by instrumenting for its price using a shock to the (residual) supply

curve for that asset. Section 4.1 considers instruments constructed from multiple shocks.

Ideal experiment. The notion of an asset-level demand elasticity pertains to an ideal ex-
periment in which one traces out an investor’s demand response to ceteris paribus variation
in a single asset price. As such, the demand elasticity is widely interpreted as the slope
of an asset-specific demand function. We show that no arbitrage restrictions imply sharp
conditions on the exact nature of state price changes associated with the ideal experiment,
and that asset-level supply shocks do not satisfy these restrictions.

It is useful to describe the ideal experiment in terms of state prices, as these ulti-
mately determine the investor’s optimal consumption plans through the cost of consump-
tion. Say that the investor observes asset prices p and payoff matrix Y. Then equation (2)

allows the investor to infer the vector of state prices implied by prevailing asset prices:

g=Y"p, 3)

where Y71 is the Moore-Penrose pseudo-inverse of Y. If Y is square, as when markets
are complete, then Y* = Y~! and there is a unique vector of state prices. If markets are
incomplete (] < Z), then there are many feasible state price vectors. We focus on the

minimum norm solution, whereby the pseudo-inverse is Y* = YT(YYT)~1,

9



Implied state prices. Equation (3) determines the vector of state price changes that oc-
cur when we vary asset price p;. Thatis, if we impose no (unbounded) arbitrage on the in-
vestor’s problem to obtain well-behaved demand functions, then the thought experiment
in which there is ceteris paribus variation in a given asset price is formally equivalent to

one in which we vary the set of state prices that determine the cost of consumption.

Lemma 2 Let v denote the unit vector in R/ with 1 in the j-th position and zeros elsewhere.

Then the changes in state prices given the exogenous variation in a single price p; are

d
ideal _q — v+,
Aq;™ = ap; =Y"v;.
Proof. The assertion follows immediately from equation (3). m

These state price changes then induce a change in the optimal consumption plan,
which can then be mapped into a change in desired portfolio holdings. Estimating the de-

mand elasticity therefore requires an empirical setting in which one can generate the state
ideal
]

restrictions can be tight: in particular, when markets are complete, the ideal experiment

price variation Aqi“®* associated with the ideal experiment. The challenge is that these

requires a unique set of state price changes.

Measurement using supply variation. In practice, one does not generally observe ex-
ogenous price shocks. Instead, one observes shocks to an economic environment that
might trigger equilibrium price changes. As such, empirical approaches to estimating
asset demand elasticities typically rely on suitably exogenous variation in asset supply
(e.g., through flows or institutional holdings) and interpret the resulting change in an as-
set price as identifying a local demand response. However, in demand systems where
the demand for one asset depends on the prices of others (as in financial markets, ei-
ther through preferences or arbitrage relations), obtaining exogenous variation in a single
price is insufficient. Instead, one must ensure that other asset prices remain unchanged.
We now show that these conditions are generically not satisfied even when re-
searchers have access to quasi-experimental variation in asset supply. The key problem is
that asset prices are linked to state prices through no arbitrage restrictions, and that sup-
ply shocks alter state prices in all states of the world in which the asset pays off. Hence,

the prices of other assets that pay off in those states will also change. Unless the asset has
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a unique state-contingent payoff (i.e., Y contains a diagonal matrix), there is no reason to
expect only p; to change.

To establish this result, we must describe how supply shocks affect state prices.
To cover a broad range of models, we impose only the weak requirement that a positive
supply shock to asset j reduces state prices in all states where asset j has a strictly positive
payoff. In standard models, this condition holds if the marginal investor has a strictly

increasing and strictly concave utility function.

Definition 2 (Downward-sloping consumption demand) Let E = (E;) ]].:1 € IR{r o denote
the vector of aggregate asset endowments. An economy has downward-sloping consumption de-

mand if there exists a Z x Z diagonal matrix V with strictly positive elements such that

Aqsupply _ 99 _ _vy].T for all assets j,

i T 9E
where y].T is the transpose of the j-th row y; = (yj(z))% of Y.

Under this definition, price changes are proportional to the induced change in con-
sumption, as determined by the payoff matrix Y, multiplied by the marginal change in
valuations induced by this shift, as measured by V. Matrix V thus captures the slope
of the marginal investor’s demand function, and V' is diagonal because marginal utility

depends on consumption. The next example computes V in a simple benchmark.

Example 2 (Representative Agent Model) In astandard representative-agent model, state prices

relate to marginal utility over aggregate consumption,

99 ) u”(C,)
e — Ty
aE] 1— 5 u

where Cy and C, are aggregate consumption at date 0 and in state z. The matrix V is

) M//(Cl) u//(cz) M//(CZ)
1_5d1ag <7rl u’(Co)""'nzu’(Co)""’nZ 7(Co) )

We can now state two formal conditions which ensure that supply shocks create
the type of state price variation required for the ideal experiment underlying a demand
elasticity. The first is that the supply shock generates precisely required price variation,

up to a scalar transformation that allows for a change in the size of the shock.
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Condition 1 (Identical variation) A supply shock to asset j generates the ideal state price vari-
ation for asset j if there exists some scalar k; such that

A q}deal — k; Aq;upply.

This condition holds for all assets if
Yt = —VYTK, where K = diag(ky, ..., kj).

While natural, one might argue that Condition 1 is too strict. The supply shock
may still provide useful variation if it does not depart too much from the ideal experi-
ment. Hence we also consider a much weaker condition, namely the state price variation
generated by a supply shock has the same sign as the state price changes in the ideal

experiment.

Condition 2 (Variation of the same sign) The supply shock generates state price variation of
supply
j

weakly positive entries, this condition holds for all assets if Y has only weakly positive entries.

the same sign if Aq}deal has the same sign as Aq element by element. Given that Y has only

We can state our main result, which states that Conditions 1 and 2 are satisfied
only under stringent conditions on the payoff matrix. In particular, if supply shocks are
to induce useful variation in state prices, then for every state of the world there must
exist a unique asset which offers a positive payoff in the world. Strikingly, both conditions
require the same stringent restrictions. That is, as long as one wants to be sure to satisfy the
minimal requirement that the induced state price variation is of the same sign as in the

ideal experiment, then there must be no assets with overlapping payoffs.

Definition 3 (Overlapping payoffs) Assets j and j' have overlapping payoffs if there exists at
least one state of the world z such that y;(z) > 0 and y;(z) > 0.

Theorem 1 (Trilemma) If Condition 1 or Condition 2 is satisfied, then YY is diagonal, and:

(i) If YY1 is diagonal, then there are no assets with overlapping payoffs.
(ii) If markets are complete, then YY1 is diagonal if and only if Y is diagonal up to permutations.

The trilemma has direct implications for recent empirical strategies that estimate

asset demand from supply shocks. Under no arbitrage and preferences over state-contingent
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payoffs, supply shocks induce general equilibrium price changes that deviate from the ce-
teris paribus variation required to identify demand elasticities. As a result, reduced-form
estimates reflect portfolio reallocation across all assets, not the partial derivative of de-
mand with respect to own price. This disconnect limits the structural interpretability of
reduced-form estimates even with quasi-experimental shocks to asset supply.

To overcome this issue, researchers must place additional structures on prefer-
ences, payoffs, or constraints. One example is the semi-structural approach in Haddad,
He, Huebner, Kondor, and Loualiche (2025), who impose a conditional homogeneity as-
sumption on the substitution matrix. Given this assumption, quasi-experimental varia-
tion in asset supply identifies a relative elasticity — the difference between an asset’s own-
and cross-price elasticities relative to similar assets — but not the absolute elasticity. Ad-
ditional variation may help to inform other elements of the substitution matrix.

The key limitation of this approach is that assumptions are imposed on the sub-
stitution matrix, which is a latent and endogenous variable. When structural restrictions
are not imposed on underlying preferences or technologies, their validity is difficult to
verify and their economic content may be unclear. The trilemma suggests that one cannot
generate the type of price variation that would validate these assumptions in the data.

Fully structural models as in Koijen and Yogo (2019) offer another alternative. By
explicitly modeling investor preferences and equilibrium price formation, they can, in
principle, recover demand parameters even in the presence of spillovers. However, this
comes at the cost of stronger assumptions. As Fuchs, Fukuda, and Neuhann (2025a)
shows, misspecification of functional forms or substitution patterns can lead to system-
atically biased estimates and unreliable counterfactuals. Hence, structural models must
be designed to account for the cross-asset spillovers which form the basis of equilibrium
portfolio choice and price determination. Because asset markets allow for rapid demand
responses to small price changes, even minor misspecifications of the structural model
can substantially affect estimated elasticities (Fuchs, Fukuda, and Neuhann, 2025b,c).

Finally, researchers may also opt to estimate elasticities at the level of asset port-
folios rather than individual assets. One example of this approach is in An and Huber
(2024), who estimate substitution along a small set of risk factors in foreign exchange
markets. Our results suggest that this is a promising approach to the extent that there

are no cross-asset linkages between portfolios. According to our analysis, this is the case

13



when assets are combined into portfolios that resemble Arrow securities. Given a generic
payoff matrix, Arrow securities are long-short portfolios — see An (2025) for an analysis
of demand elasticities of long-short portfolios.

The key difficulty with estimating demand over portfolios is that it is harder to
construct instruments that provide exogenous variation. If shocks originally occur at the
asset level, then one requires a specific combination of asset-level shocks to generate a
portfolio-level supply shifter. This typically requires knowledge of the payoff matrix,
which is latent. We discuss this point in more detail in Section 4.1.

Finally, we stress that, for specific individual assets and payoff matrices, it may
well be the case that a supply shock does generate the ideal variation. In this case, our
results offer a way of checking the internal consistency of an empirical test: since the esti-
mated parameters of a model imply a payoff matrix, one can invert it and check whether

the induced variation aligns with the ideal experiment.

4.1 Constructing instruments from multiple shocks

One potential solution to the problems discussed above is to construct price instruments
from multiple supply shocks. For example, if a researcher has access to supply shocks for
every asset, then a combination of these shocks may generate the right state price variation.
To fix ideas, suppose that, for a given asset j, there exists a vector of coefficients ¢ € R/

such that the ideal variation Aqi‘deal

i Visa linear combination of the vectors of supply shocks:

A q}cleal — A qsupplylp.

Then, an instrument constructed from ¢-weighted combination of asset-level supply shocks
would be suitable for estimating the demand elasticity for asset j. However, while this
is theoretically possible, the main practical challenge is that the weights 1 necessarily
depend on the payoff matrix Y, which is unobserved to the econometrician. Hence, con-
structing instruments in this manner does not present a practical solution unless one is
willing to rely on strong assumptions about the payoff matrix. This also explains why
much of the existing literature relies only on asset-level supply shocks: if there were no
cross-asset restrictions to worry about, then individual supply shocks would be valid in-

struments even without knowledge of the payoff matrix.
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5 Illustration in a general equilibrium model

We now illustrate our results in an example economy with a log-utility representative
investor based on Fuchs, Fukuda, and Neuhann (2025a).

There are two assets and two states of the world, both denoted by g (green) and r
(red). The probability of state z € {g,r}is 7t € (0,1). The payoff profile of asset j € {g,}
isy; = (y;(g),yj(r)). The aggregate endowments satisfy E, = 1 and E; = 1+ s, where
s¢ is a supply shock to the green asset.

Table 1 depicts the payoff matrix. Markets are complete, and parameter € € (0,1)
determines the degree of complementarity between green and red assets. In the limit
€ — 0, green and red assets are perfect substitutes with respect to their cash flows. The
assets become more complementary as € increases. In the limit € — 1, the green and red

assets are Arrow securities paying exactly one unit in one state of the world.

State ¢ (71¢) | State r (71,)
Assetg | 3(1+e€) I1—¢)
Assetr | 5(1—¢) s(1+e)

Table 1: Payoff matrix.

Prices. Denote by g, and g, the state prices measuring the cost of a unit of consumption

in states ¢ and r, respectively. Under no (unbounded) arbitrage, asset prices satisfy

[Pg] _ [yg(g) yg(r)] [‘Jg] ‘ 4)
pr yr(g) wr(r)] |ar

We can invert this expression to solve for state prices as a function of the asset prices:

HEE 7

Demand. Since markets are complete, we can solve the decision problem in terms of

(1+e) —(1-—¢)
—(1—¢€) (1+e¢)

state-contingent consumption. Let c; denote quantities of Arrow securities chosen by the
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investor, and let g, the associated state prices. The decision problem is:

max (1 —0)u(cg) + omgu(cg) + drrru(cy)

(COrcg/CV)

st co+ Y. Gz=eo+ Y, 4z (yg(z)eg + yr(z)er>.
ze{gr} ze{gr}

The necessary and sufficient optimality condition for Arrow security z € {g, 7} is

5 u'(cy)
1-96 /(CO)'

(5)

Gz = Tz

Given the budget constraint, this condition determines optimal consumption as a func-

tion of Arrow prices. Consumption can then be mapped back into asset positions.

State prices in the ideal experiment. Consider the ideal experiment where a given in-
vestor faces an exogenous increase in the price of the green asset p, while p, remains

tixed. Consistently with Lemma 2, the induced change in state prices is

1+¢€
—(1—¢)

5 ] )4
g |ar|  Ye(Qur(r) —ye(r)yr(8) | —yr(g)| 26

A pure shock to p¢ thus raises the cost of consumption in state g, but lowers it in state 7.
The reason is that replicating an Arrow security on the green asset requires going long
the green asset and shorting the red asset, while replicating a red Arrow security requires
going long the red asset and shorting the green asset. Holding p, fixed, a change in p,
thus has the opposite effect on state prices in the two states of the world. Estimating
the demand elasticity associated with this experiment thus requires a shock that triggers

precisely this price variation.

State prices after a supply shock. We now show that supply shocks do not create the
ideal state price variation. Market clearing requires consumption to equal available re-

sources in every state:

¢z = Yg(2)(1 +5¢) +yr(2).
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Hence equilibrium state prices as a function of supply s, are:

=7 0 ! and =T 4 !
BT 1+ Hesg LS 1+ 13%sg

(6)

It contrast to the ideal experiment, it is apparent that a negative supply shock to the green
asset increases both state prices. In particular, differentiating g, with respect to s¢ and
evaluating in the limit s, — 0 yields

dqq B 0 1+e gy 0 1—e€

<0 and = —ﬂrm 5

E)sg 1-6 2 asg 5350

The reason is that the green asset pays off in both states of the world. Unfortunately,
this means that the supply shock generates a state price change that is of the wrong sign
compared to the ideal experiment.

The only exception is when € = 1, so that the payoff matrix is the identity matrix.
In line with our theoretical results, this is because the underlying assets are Arrow assets,
and these do not generate cross-asset spillovers to other assets. However, for all other €

even a purely exogenous supply shock does not generate the right variation.

Implications for demand. The fact that the supply shock generates the wrong type of
state price variation dramatically affects the observed demand response. We illustrate this
effect by computing the response to the consumption ratio c¢/c, to both the ideal experi-
ment and the supply shock. Given log utility, it follows from the first-order conditions (5)

that the relative consumption process satisfies:

Cs _ Mg qr 7)
c Trqg

Relative consumption in turn determines the desired holdings of green and red assets.
Consider first the ideal experiment with a pure hypothetical price shock. Differen-

tiating the optimality with respect to p, and evaluating in the limit s, — 0 yields:

_ 9 (%
dpg \ Cr

This derivative diverges to infinity as € — 0. As the two assets are perfect substitutes in

1-6(1—-e)mg+ (1+€)my
6 27T TTr€ '

(8)

sg—0

17



Supply vs Hypothetical Shocks

—— Supply Shock
i — — Hypothetical
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Complementarity e

Figure 1: Optimal change in consumption ratio cy/c, on log scale. Parameters: 77, = 71, = 5 and
=1
3

this limit, a small price shock triggers a rapid reallocation from green to red assets.

Next, consider the response to the supply shock. In the limit as s; — 0,

0 (%
dsg \ ¢

which converges to zero in the limiting case of perfect substitutes as € —. When the two

=e€. 9)

sg—0

assets are perfect substitutes, a supply shock has identical effects in both states. As such,
it results in zero difference in the optimal consumption ratio across the two states.

Figure 1 depicts the optimal investor-level response to the hypothetical price shock
(8) and the response to the supply shock (9) on log scale ( Appendix A.3 provides the
derivations of these expressions). The difference in responses diverges to infinity as € —
0. The only point of overlap occurs when the two assets are both Arrow securities. In line

with our theory, this is the case where there can be no spillovers across assets.

6 Conclusion

We show that asset-level supply shocks generally fail to generate the ceteris paribus price
variation required to identify demand elasticities in asset markets. This reflects a funda-
mental trilemma: no arbitrage, payoff-based preferences, and identification from supply

shocks cannot all hold simultaneously in observational data. As a result, elasticity esti-
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mates must rely on structural assumptions that cannot be directly validated. Our findings
highlight the limitations of reduced-form approaches and underscore the importance of

carefully specified models in empirical asset demand estimation.
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A Appendix

A.1 Section 2

Proof of Proposition 1. For the first statement, let a*’ € A’ be a solution to (1). For ease
of exposition, we allow 0 to be in the domain of u (this is not essential). Suppose to the
contrary that there is an unbounded arbitrage opportunity. Since u’ is strictly increasing,

there exists m > 0 such that
U'(a*) < (1 =08 u'(el +p-e)+ 8 mu' (m) + 6'(1 — 7,)u' (0) for some z

and

Ui(a*i) <(1- (Si)ui(ef) +p- e+ m) + 5iui(0),
where ¢ = (e;.)]lzl.
there exists a* € A’ such that either (i) p- at <0,YTal > 0,and (YTai) » > m, in which case

Since there is an unbounded arbitrage opportunity, for this m > 0,

U'(a*) < (1= u'(el +p-e) + 8 mu' (m) + 6 (1 — 7,)u' (0) < U'(a’)
or (ii) p - a' < —mand YTa' > 0, in which case
U'(a*) < (1—8"u'(e)+p-e +m)+u'(0) < U (a).

In either way, a*' € A! does not solve (1), a contradiction.
For the second statement, since there is no unbounded arbitrage opportunity, there

exists m > 0 such that, for any a’ € A’,
U'(a') < (1—68Yul(eh +p-e 4+ m)+ 6'ul(m).
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Thus, we obtain:

sup U'(a) < (1 —06)u'(e) + p-e' +m) + &'u'(m) < co.
ale Al

Then, there exists a sequence (a"),cn from A’ such that

| o -
sup U'(a') — = < U'(a™) < sup U'(a') < oo forall n € IN.
ate Al n ate Al

Since sup,; 4 U'(a') < o0, it follows that

sup |a"| < coforallje {1,...,]}.
nelN J

Since A’ is closed, it follows that there exists a convergent subsequence (a" ) cn of
(a™)en such that a™' — a* € A!. Since U’ is continuous, it follows that
ui(a*i) = sup Ui(ai),
ate Al
as desired. m

Proof of Lemma 1. Suppose the conditions in the statement of the lemma. The proof

consists of seven steps. First, for each i € Iy, we define a subset M of R4t
Mi = {(_P . ai,YTui) c RZH1 | ai c .Al}

Then, for each i € Iy, since investor i does not have an unbounded arbitrage opportunity,
it follows that

M'NRZT = {0}.
Note that R% ! is a closed convex cone in R?*! and does not contain any linear subspace

other than {0}.

Second, let

M = UMi.

iEIO
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It follows from the assumption

R/ = J A

iely
that
M= {(-p-a,YTa") e R | a' € R}

is a linear subspace.
Third, since
MNR4H = {0},

it follows from the separating hyperplane theorem (which is referred to as “Linear sepa-
ration of Cones” in Duffie (2001)), there exists 7 € R%*1\ {0} such that
g-t<g-xforallt € Mand x € R

Fourth, we show that g & lR_{f. Since 0 € M, it follows that

0:ﬁ~0<ﬁ~xforallx€Ri+1.

Taking x as standard unit vectors in IRii[l yields g, > 0 for all z.

Fifth, we show that
0=g-tforallt € M.

Suppose to the contrary that 0 # 7 - t for some t € M. Since M is a linear subspace, we
can assume, without loss, that

7-t>0.

However, this leads to a contradiction because, for any given x € IRif, there exists A € R
such that At € M and
7-x<AMq-t) =7q- ().

Sixth, we show that
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It follows from the fifth step that

—pT ,
ﬁT[Y;;]a:OforallaelR]: U A

i€l
If
T
—T|—P
T | 1| 70
then letting
1\ T
_[=T|™P J_ i
a= cR =| A
([ F]) ew-u
yields
T —PT
q YT a>0,
a contradiction.
Seventh, then, denoting by
g = (q0,9-0),

we have

0

Letting g = liq;oo € R%,, we finally obtain

p=1Yq,

as desired. =

A.2 Section 4

Proof of Theorem 1.  First, we show that Condition 1 implies that YYT is diagonal.
Suppose YT = —VY'K for some diagonal matrix K = diag(ky, ..., kj).
Operating Y on both sides from the left,

I=—-YVYTK,
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where both sides are a | x ] matrix. The (j,j’) element of the right-hand side is

— Yl yi(@)vyp(2)ky =1 ifj=7]
— Y2 yi(2)oyp(z)ky =0 ifj £

This implies that k; # 0 for all j. Then,
Vi1 yj(2)vyp(z) #0 ifj =]
Y yi(2)oayy(z) =0 ifj £
Since yj(z), y]-/(z) > 0, and v, > 0, it follows that
Y yi(2)yp(z) 0 ifj =7
Y yi(2)yp(z) =0 ifj# ]

Hence, YYT is diagonal.

Second, we show that Condition 2 implies that YYTis diagonal. Since Yisa | x Z
matrix with | < Z and rank(Y) = J, the Moore-Penrose pseudo-inverse is given by
Y™ = YI(YYT)~!. By Plemmons and Cline (1972, Theorem 1), the pseudo-inverse Y
is non-negative if and only if there exists a diagonal matrix with positive elements D =
diag(ds, ...,dz) such that

Yt =DY™.

Then, operating Y from the left,
I=yY'(yvYH)! =yDY"
Then, extracting the (j, k) element (with j # k) from each of both sides,
z
0=) yj(2)d:y(z).
z=1
Since yj(z) > 0,d; > 0,and yx(z) > Oforallz € {1,...,Z}, it follows that

yi(z)yx(z) =0forallz € {1,...,Z}.
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This implies that the (j, k) element (with j # k) of YYT is 0:

Z
0=Y_yj(2)y(z). (10)
z=1

Thus, YYT isa diagonal matrix.

We remark that the converse also holds. Suppose that YYT is a diagonal matrix.
Since YYT is invertible under Assumption 1, (YYT)~! is a diagonal matrix with positive
entries. Since Y is non-negative, so is YT. Then, Y* = YT(YYT)~! is non-negative.

Third, we show that, given that YYT is diagonal, there are no assets with over-
lapping payoffs. Since YYT is invertible, it is a diagonal matrix with positive elements.
Equation (10) implies that, for any z € {1,...,Z}, there exists at mostone j € {1,...,]}
such that y;(z) > 0.

Fourth, we show that if markets are complete then YYT is diagonal if and only if Y
has exactly one non-zero element in each row and in each column (so that Y is a diagonal

matrix up a re-ordering of rows or columns). If YYT is diagonal, then its (j, k) element is:

{zz () >0 ifj =k
Yayi(2)y(z) =0 ifj #k

Hence, for each row j, there exists exactly one element z such that y;(z) > 0. Thus, Y
has | non-zero elements. Since Y is square and invertible, for each column z, there exists
exactly one element j such that y;(z) > 0.
Conversely, if Y has exactly one non-zero element in each row and in each column,
then
{zzz 1i(2y(2) >0 ifj =k
Yayi(@ye(z) =0 ifj#k
Thus, YYT is diagonal. m
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A.3 Section 5

First, we derive equation (8). Since the Arrow prices g can be expressed as a function of

the asset prices p through equation (4), the consumption ratio (7) can be written as:

s _ T (I+e)pr—(1—¢€)pg

o m (I tepg—(1-op

Thus, differentiating it with respect to the price p,, we have:

i C_g>:_ﬁ depr 11
apg(cr % (T ps— A—p)? (i

In contrast, substituting the Arrow prices (6) into equation (4), we obtain:

_l4e 61 l-e o 1
T 1-014 158, 2 T1-014 155y
1—e€ ) 1 1+e€ ) 1

= 7T + 7T .
4 e A 2 =014 Lk

Substituting the asset prices p at s¢ = 0 into equation (11), we obtain equation (8). When

6= % and 71 = 71, = %, equation (8) reduces to:

9 (%
dpg \ Cr

Second, we derive equation (9). Substituting the Arrow prices (6) into the con-

1
-

p

sumption ratio (7) yields
cg 1+ %Sg.

Thus, differentiating it with respect to the supply shock s¢, we obtain

i(c_s)_;
dsg \ ¢ _<1+¥58)2'

In the limit as s, — 0, we get equation (9).
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