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Abstract

Recent approaches to asset pricing use structural methods to estimate investor-

level demand functions for financial assets. We show that cross-asset complemen-

tarities and price spillovers can significantly bias these estimates: if close substitutes

exist, measured elasticities are near one even if true elasticities are near infinite. This

reconciles low demand-system elasticities with higher theoretical benchmarks. Biases

are smaller for less substitutable assets, such as broad portfolios or asset classes. Con-

trol variables lead to estimates of residual demand elasticities which may offer limited

information about asset-level demand. We caution against interpreting estimated de-

mand elasticities as structural parameters which remain stable under counterfactuals.
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1 Introduction

Recent approaches to asset pricing following Koijen and Yogo (2019) involve the struc-

tural estimation of investor-level demand functions for financial assets. Advocates of

this approach argue that detailed data on portfolio holdings can be used to structurally

identify investor-level demand parameters for specific assets, and that granular descrip-

tions of individual demand functions offer new insights into the functioning of financial

markets, including the equilibrium response to a wide array of counterfactuals, such as

shocks to the wealth distributions, investor preferences, or policy interventions. Perhaps

the most striking claim in this literature is that demand elasticities for financial assets are

orders of magnitude lower than in standard models (Koijen and Yogo, 2021).

While compelling in its motivation, the promise of the demand-system approach

ultimately hinges on its ability to accurately identify structural parameters of interest.

Yet existing demand estimation techniques, including the logit approach in Koijen and

Yogo (2019), were originally developed for settings that differ substantially from portfo-

lio choice and asset pricing. For example, the prototypical demand estimation in indus-

trial organization considers market-level analyses of discrete choices over consumption

goods. Such settings generally do not feature many considerations which are central to

asset pricing, including cross-asset demand complementarities within portfolios, variable

quantities, dynamic trading, and general equilibrium price determination. Hence it is an

open question whether current demand approaches can indeed identify structural param-

eters in settings where these features are critical. We answer this question in a canonical

asset pricing model (Lucas, 1978) enriched with heterogeneous tastes for financial assets.1

Our main finding is that current asset demand systems do not adequately account

for cross-asset complementarities in portfolio choice, whereby the marginal value of an

asset depends, in an asset-specific manner, on the investor’s holdings of other assets. As

such, asset demand systems may yield low measured demand elasticities even when true

elasticities are near infinite. This offers a simple explanation for the striking difference

between the low demand elasticities documented by leading demand systems estimates

and the high demand elasticities obtained in standard models. More constructively, we

1Taste differences are critical because they generate cross-sectional heterogeneity in portfolios, as in the
data. They also make it possible to construct demand shocks to some investors that are suitably orthogonal
to the demand of other investors. This is required for identification of demand functions.
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also show that this bias is smaller when assets are not particularly substitutable, as may

be the case for highly aggregated asset classes with little overlap in the cash-flow distri-

bution. Nevertheless, we caution that demand elasticities, even if well-measured, can be

interpreted as structural parameters only under stringent additional assumptions.

A simple thought experiment is instructive. Consider an investor who must choose

between three assets: two closely substitutable “inside assets,” say Microsoft and Apple

stocks, and a less substitutable “outside asset,” say a bond. Now consider a supply shock

to Microsoft which raises its price. All else equal, the investor would like to buy Ap-

ple and finance this trade by selling Microsoft (a demand complementarity). Given this

substitution within inside assets, she then finds it optimal to leave her holdings of the

outside asset roughly unchanged (heterogeneous substitution). Yet if many investors pur-

sue the same strategy, the price of Apple must increase (a price spillover), taking away any

individual investor’s incentive to switch from Microsoft to Apple. In equilibrium, the

investor’s portfolio is thus relatively unresponsive to exogenous variation in the price of

Microsoft even though she would have responded very rapidly had the price of Apple re-

mained fixed. That is, demand complementarities and price spillovers create a disconnect

between observed elasticities (which incorporate all equilibrium adjustments) and struc-

tural elasticities (which counterfactually presume that other asset prices remain fixed).

Given this disconnect, identifying structural elasticities from observational data re-

quires appropriately accounting for heterogeneous substitution and price spillovers. Yet

current approaches place stark restrictions on substitution patterns and price spillovers.

For example, logit demand systems following Koijen and Yogo (2019) assume that com-

plementarities and spillovers can be accounted for by measuring demand for inside assets

relative to the outside asset. Given this restriction, price spillovers between inside assets

are immaterial, and observed changes in relative portfolio shares identify the elasticity

of relative demand. Naturally, biases arise when this restriction fails, as is the case when

inside assets are more substitutable with each other than with the outside asset.

Figure 1 illustrates the nature of this bias. In both panels, we consider an exoge-

nous supply shock from S to S′, and identical observed equilibrium prices and quantities

E and E′. The left panel depicts a demand system following the approach in Koijen and

Yogo (2019) in which the demand curve determining the relative portfolio share of asset

j is invariant in the quantities or prices of other inside assets. Given this assumption,
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Figure 1: Elasticity measurement based on different demand system specifications. The left panel corre-
sponds to logit demand for financial assets (Koijen and Yogo, 2019), whereby relative demand for a given
asset is invariant in the prices and quantities of other assets (as in Partial Equilibrium). The right panel
allows for cross-asset complementarities (as in General Equilibrium). The supply curves and the observed
equilibrium allocations are identical in both panels. We use ωj to refer to portfolio share of asset j, and ω−j
to denote the vector of portfolio shares of assets other than j. Analogous definitions hold for asset prices pj.
Demand is measured in units of portfolio shares relative to ωo, the portfolio share of the outside asset.

observed portfolio changes are interpreted as a move along a relatively inelastic demand

curve. The right panel depicts a demand system in which demand for asset j depends

on the holdings and prices of other inside assets, and these respond endogenously to

the supply shock. The observed demand response is now rationalized by high elasticities

and a shift of the demand curve. Because standard models naturally generate demand

curves with complementarities (even when measured in relative terms), this mechanism

can account for the dramatic difference between low measured elasticities in the demand-

system approach and much higher elasticities in standard models.

We derive this bias formally by decomposing the difference between measured and

structural elasticities into the product of demand complementarities (i.e., the cross-elasticity

between the focal asset and all potential substitutes and complements) and price spillovers

(the equilibrium response of other asset to a shock to a given asset). Hence the bias is

large whenever close substitutes are available and substitute assets are quickly repriced

in response to shocks. That is, the bias is large precisely when markets are elastic.

One suggested approach to the problem of heterogeneous substitution and spillovers

is the use of control variables. A given supply shock may trigger spillovers primarily to

other assets with similar factor exposures. In this case, controlling for common factor
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exposures mitigates the resulting asymmetry in substitution. However, controls also di-

rectly alter the degree of substitutability between choices: two assets may be substitutable

precisely because they have common exposures. The use of controls then yields demand

elasticities defined over the residual cash flows unaccounted for by controls. If these resid-

ual cash flows are less substitutable than the asset itself, the resulting demand elasticities

are naturally lower and may carry little information about asset-level elasticities.

In the final part of our analysis, we ask whether financial demand elasticities, even

if well-measured, should be interpreted as structural parameters that are likely to be in-

variant under counterfactuals. To do so, we incorporate another feature that distinguishes

financial markets from many goods markets, which is that assets are investment goods

whose current value critically depends on their resale price. Using a dynamic variant

of our model, we derive demand functions for financial assets that depend both on the

investor’s private tastes and her expectations of market returns. As in a beauty contest

(Keynes, 1936), demand elasticities alone thus cannot distinguish whether an investors’

demand is due to her own tastes or her expectations of others’ tastes. Yet estimating

counterfactuals in many cases requires assigning tastes to a particular investor.

We establish a related result for unobservable portfolio constraints. For a range of

parameters, tastes for a given asset are observationally equivalent to unobserved man-

dates that constrain an investor’s portfolio choice. Yet an unconstrained investor will

respond differently to a counterfactual price shock than a constrained investor.

Related Literature

Demand-system asset pricing is grounded in structural estimation of investor-level port-

folio choice functions. This is a sharp break from neoclassical asset pricing, which has

little interest in asset quantities and instead focuses on price data disciplined by no arbi-

trage (Ross, 2004). It also differs from existing approaches that do emphasize quantities,

such as classical theories of portfolio balance (Tobin, 1969), convenience yields in Trea-

sury markets (Krishnamurthy and Vissing-Jorgensen, 2012), intermediary asset pricing

(He and Krishnamurthy, 2013; Adrian, Etula, and Muir, 2014), capital flows due to in-

dex inclusion or other market frictions (Shleifer, 1986; Harris and Gurel, 1986), which

emphasize aggregate demand effects in certain asset classes or markets, but stop short of
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structurally estimating investor-level demand functions for specific assets.2 The fact that

estimated demand systems appear to reveal that financial institutions exhibit low demand

elasticities has also been used to argue that financial markets as a whole are inelastic, with

implications for the equity premium (Gabaix and Koijen, 2020).

Demand elasticities implied by the aforementioned literature on capital flows are

broadly similar to those found in demand-based approaches. However, the goal of this

literature is not to isolate structural elasticities (in which all other prices are held fixed)

from general equilibrium elasticities (which incorporate all adjustments). That both ap-

proaches find similar elasticities can therefore be explained by the fact that they ultimately

estimate similar objects (namely, the general equilibrium elasticity). Our analysis here fo-

cuses on approaches that aim to estimate structural elasticities and parameters.

Several papers build on the logit demand system to study substantive questions,

including effects the of counterfactual wealth distributions (Koijen, Richmond, and Yogo,

2024), global imbalances and currencies (Jiang, Richmond, and Zhang, 2023), corporate

bond markets (Bretscher, Schmid, Sen, and Sharma, 2022; Darmouni, Siani, and Xiao,

2023), asset purchase programs (Breckenfelder and De Falco, 2023), bond market substitu-

tion (Nenova, 2025), and stock market competitiveness (Haddad, Huebner, and Loualiche,

2025). Davis, Kargar, and Li (2025) share our interest in accounting for low measured

elasticities but use a partial equilibrium approach without endogenous price spillovers.

While these studies extend the scope of asset demand systems in important ways, they

do not address the specific issues of complementarities and spillovers we discuss here.

There are three main approaches to addressing the issue of complementarities and

spillovers, each of which offers distinct advantages depending on the application. The

first approach is using richer structural approaches that directly model complementarities

and spillovers. Unfortunately, there are limited methods for dealing with asset-level com-

plementarities in demand estimation (Berry and Haile, 2021).3 In the context of financial

markets, Allen, Kastl, and Wittwer (2025) estimate a model of demand complementarities

in simultaneous auctions of treasury bonds. In contrast to equity markets, their setting

2See also additional studies of index inclusions (Chang, Hong, and Liskovich, 2015; Pavlova and Siko-
rskaya, 2023; Greenwood and Sammon, 2025), and research on fund flows (Gompers and Metrick, 2001;
Coval and Stafford, 2007; Lou, 2012; Ben-David, Li, Rossi, and Song, 2022; Hartzmark and Solomon, 2024;
Li, 2025) and central bank interventions (Krishnamurthy and Vissing-Jorgensen, 2011; Selgrad, 2023).

3In industrial organization, existing research typically considers small choice sets with limited comple-
mentarities. Gentzkow (2007) studies newspaper demand with a choice between print, online, or both.
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features a small number of assets and data on bid schedules, not just portfolio holdings.

The second approach is to impose additional structure on the substitution ma-

trix. For example, Koijen and Yogo (2020) and Chaudary, Fu, and Li (2023) use nested

logit demand systems to study international financial markets and corporate bond mar-

kets. Nested logit allows researchers to capture specific forms of heterogeneous substi-

tutions. In the case of corporate bonds, for instance, it is reasonable to assert that substi-

tution within investment grade bonds is easier than across rating groups. Accordingly,

Chaudary, Fu, and Li (2023) find much larger elasticities when allowing for heterogeneous

substitution. A different restriction is used in An and Huber (2024), who model substitu-

tion along a small number of factors in foreign exchange, and Nenova (2025), who allows

for more flexible substitution patterns using a rich set of covariates. The main limitation

of these approaches is that they require ex-ante restrictions on the substitution matrix,

even though substitutability is endogenously determined alongside returns and portfo-

lios. Moreover, these restrictions must be valid for the marginal investor, and spillovers

may still occur within groups of assets. In line with our findings, appropriate restrictions

may be easier to ascertain for aggregate portfolios than individual securities.

The third approach is the use of reduced-form methods using control variables or

difference-in-difference estimators. For example, van der Beck (2022) argues that estimat-

ing demand elasticities from trades rather than positions eliminates some endogeneity

concerns in instrumental variables, while Haddad, He, Huebner, Kondor, and Loualiche

(2025) show that, if one is willing to make strong symmetry assumptions on the substitu-

tion matrix across all assets in the choice set, one can identify relative elasticities between

pairs of assets. The main limitation of this approach is that one cannot estimate the abso-

lute elasticity, and that the required symmetry assumptions are unlikely to hold without

additional conditioning information, such as control variables. As we discuss, the use of

control variables generates estimates of a residual relative elasticity.

By allowing for tastes over assets, our paper also contributes to a growing literature

in which investors hold securities because of non-pecuniary values (Starks, 2023). The

literature includes the study of investment in “green assets” associated with sustainable

investments.4 Fuchs, Fukuda, and Neuhann (2025) show that “tastes” are orthogonal to

returns if investors have deontological preferences, but not if they are consequentialist.

4See, for example, Pastor, Stambaugh, and Taylor (2021) and D’Amico, Klausmann, and Pancost (2023).
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2 Framework

We begin by describing the general framework we use throughout the paper. Our goal

is two-fold: to clarify the theoretical underpinnings of asset demand systems, and to as-

sess whether current approaches to demand estimation can accurately identify structural

elasticities. Our approach is to specify a canonical general equilibrium economy based on

Lucas (1978) and to evaluate the properties of asset demand systems within this frame-

work. To accommodate features necessary to match heterogeneous portfolios and achieve

identification, we enrich this model with investor “tastes,” defined as heterogeneous val-

uations for financial assets across different investors. We begin by reviewing the rationale

for these tastes, and then formally describe our framework.

2.1 The importance of heterogeneous valuations

We start with reviewing key model ingredients necessary to allow for the identification

of investor-level demand functions for financial assets from observational data. The main

challenge is that quantities and prices are jointly determined in equilibrium. Hence sim-

ple regressions of quantities on prices do not identify structural parameters.

To address this issue, the literature on demand-system asset pricing focuses on

variation in net supply, defined as aggregate supply minus demand of a subset of market

participants. Figure 2 illustrates this approach. The left panel shows the canonical supply

and demand diagram in an endowment economy for financial assets where the supply

curve S is vertical. In the panel, D1 and D2 are demand curves for individual market

participants, and DA is aggregate demand. The right panel shows a potential solution: if

exogenous shocks to aggregate supply S are not available, researchers can still estimate

the structural parameters of demand function D1 by finding exogenous variation in resid-

ual supply S−D2. That is, we construct exogenous shocks to the residual supply curve of

a given investor by finding exogenous shocks to the demand functions of other investors.

This approach places stringent constraints on the variation that can be used to

identify demand systems. In particular, researchers must find settings in which there are

demand shocks to a subset of investors that is uncorrelated with the demand of other

investors. In the context of financial markets, this implies that one must find changes to

market prices that are not driven by correlated shocks to discount rates and/or expected

7



Quantity

Price Supply S

D1

D2

DA

(a) Aggregate Supply and Demand.

Quantity

Price Supply S

D1

D2

Net Supply S− D2

(b) Net Supply and Demand.

Figure 2: The basic identification issue in an endowment economy.

payoffs. Since financial assets are investment goods whose current value generically de-

pends on their resale value, these requirements extend to expected future prices.

Two microfoundations for such shocks have been proposed. The first is cross-

investor heterogeneity in tastes for particular assets, holding fixed a certain notion of ex-

pected cash flows. These could arise from differences in investor preferences over the

provenance of cash flows, such as when some investors prefer to invest in environmentally-

friendly firms. Or, investors may have dogmatic beliefs about returns that are orthogonal

to the beliefs of other investors. While useful for identification, Appendix B shows that

tastes can invalidate the principle of no arbitrage. The second is constraints or investment

mandates that prevent some market participants from investing in a particular asset for

exogenous reasons. We therefore use a framework that allows for both heterogeneous

tastes (or dogmatic beliefs) and flexible constraints.

2.2 Formal model

We consider a one-shot portfolio choice problem in which an investor can choose to con-

sume at date 0 and/or at date 1. Section 4.1 considers a simple dynamic extension.

There is a unit continuum of investors indexed by i. Investor i has a von Neumann-

Morgenstern utility function defined over lotteries which determine the investor’s con-

sumption. A random state of the world z ∈ Z ≡ {1, . . . , Z} is realized at date 1, and the

probability of state z is πz ∈ (0, 1). The set of assets is J ≡ {1, . . . , J}. Asset j ∈ J offers
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state-contingent cash flows yj(z) in state z. Investor i is endowed with ei
j units of asset

j and additional non-asset endowment wi
0 and wi

1(z) at dates 0 and 1, respectively. The

aggregate endowment of asset j is Ej =
∫

i ei
jdi.

Within this framework, we introduce payoff-augmenting tastes, defined as addi-

tional “consumption-equivalent” value that is generated by a particular asset. These taste

parameters are designed to capture the heterogeneity in asset valuations that is required

for a meaningful notion of exogenous shocks to residual demand. Formally, we say that

investor i evaluates her payoffs from holding portfolio ai ≡ (ai
j)j∈J by both the cash

flows it generates and her tastes θi ≡ (θi
j)j∈J over assets, where θi

j > 0. Preferences are

then defined over effective units of consumption delivered by portfolio ai, and these are

c̃i
1(z) ≡ ∑

j∈J
θi

jyj(z)ai
j + wi

1(z).

Investors may also be subject to portfolio constraints such as short-sale constraints,

investment mandates, or restrictions on portfolio weights on particular asset classes. To

capture these considerations in a flexible manner, we say that investor i faces N ≥ 0

investment constraints on portfolio choices. The n-th investment constraint is defined as

Mi
n(ai, p) ≥ 0,

where ai is investor i’s portfolio, p ≡ (pj)j∈J is the price vector, and the function Mi
n(·) is

twice continuously differentiable in ai
j for all j. We assume that the set of feasible portfo-

lios induced by these constraints is convex.

Given these assumptions, investor i’s portfolio choice problem is:

max
ai

(1− δ)ui(ci
0) + δ ∑

z∈Z
πzui(c̃i

1(z)) (1)

s.t. ci
0 = wi

0 − ∑
j∈J

pj(ai
j − ei

j)

c̃i
1(z) = ∑

j∈J
θi

jyj(z)ai
j + wi

1(z) for all z

Mi
n(ai, p) ≥ 0 for all n,

where δ ∈ (0, 1] is a discount factor and the first two constraints are budget constraints

at time 0 and time 1 in state z. We summarize investor i’s marginal valuations by the
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taste-augmented marginal rate of substitution between state z and date 0, defined as

Λ̃i(z) ≡
δπzui′(c̃i

1(z))
(1− δ)ui′(ci

0)
,

where ui′ is marginal utility. Our equilibrium concept is competitive equilibrium.

Definition 1 (Competitive Equilibrium) A competitive equilibrium consists of asset prices

(pj)j∈J and investor portfolios (ai
j)j∈J for each i such that:

1. Given asset prices, investor portfolios solve decision problem (1) for each i.

2. The consumption goods market clears in every state.

3. Financial markets clear for every asset:
∫

i ai
jdi = Ej for each j ∈ J .

2.3 Model Discussion

Our model is designed to allow for a transparent and tractable analysis of demand estima-

tion within a canonical asset pricing framework. The main departure is the introduction

of tastes parameters which generate heterogeneous asset valuations across investors. We

now briefly discuss some broader implications of tastes in asset pricing.

In our approach, tastes multiplicatively augment consumption. As we will show,

they operate like “latent demand” shifters in Koijen and Yogo (2019). An alternative ap-

proach is to specify additive separable tastes, whereby investor obtains some additional

value (or disutility) from holding certain assets that is separable from risk-return consid-

erations. Both formulations deliver essentially identical conclusions.

Since portfolio choice requires a cardinal interpretation of utility, the intensity of

tastes influences portfolio choice. This is in contrast to many settings in industrial or-

ganization where an ordinal ranking is sufficient. Asset demand systems thus require

accurate identification of the specific values of a taste parameter. Moreover, the aggrega-

tion of assets into portfolios requires appropriately weighting tastes by marginal utility.

More broadly, there is a correspondence between tastes and heterogeneous beliefs.

Specifically, the state space over which payoffs are defined can be enriched to include

“taste-based payoffs.” Heterogeneous tastes then map into heterogeneous beliefs if in-

vestors differ in their subjective probabilities over this augmented state space. Impor-
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tantly, such taste-related beliefs are dogmatic: investors agree to disagree, and in partic-

ular they may disagree on whether a particular state of the world can be realized. Such

strong disagreement is desirable when trying to construct supply shocks because it allows

for the possibility of orthogonal demand shocks. However, heterogeneous valuations are

in tension with the organizing principle of no arbitrage. Appendix B shows that no arbi-

trage might fail given heterogeneous tastes, so that equilibrium prices may fail to exist.

3 Measuring and Interpreting Asset Demand Elasticities

In the previous section, we discussed the first main challenge of demand estimation,

which is to develop conceptual frameworks for asset pricing which permit suitably ex-

ogenous shocks to residual supply. We now turn to the second main challenge, which

is to develop a demand system which accurately identifies structural parameters from

the data given this variation. We emphasize two critical factors that make this challenge

particularly difficult in financial markets: (i) portfolio choice naturally exhibits demand

complementarities whereby the marginal valuation of an asset depends on the rest of the

investor’s portfolio, and (ii) in market equilibrium, such demand complementarities gen-

erate price spillovers to other assets. Given these considerations, even clean exogenous

variation in asset prices is generally not sufficient to identify structural parameters.

Throughout, we focus on estimating the elasticity of demand for asset j with re-

spect to variation in some asset price ps. This could be the asset’s own price (s = j), or the

price of another asset (s 6= j). Let ai
j(p, ai

−j) denote investor i’s demand function for asset

j, where p is the vector of asset prices and ai
−j is the vector of investor i’s remaining asset

positions.5 The elasticity of demand is the percentage change in i’s demand for asset j

given a percentage change in the price of asset s, holding all other prices fixed:

Ejs ≡ −
∂ai

j(p, ai
−j)

∂ps

ps

ai
j(p, ai

−j)
.

We refer to Ejj as the own-price elasticity and to Ejs (s 6= j) as the cross-price elasticity.

5Some implementations of the demand system approach define elasticities over portfolio shares rather
than asset holdings, or consider demand relative to a benchmark asset. However, the appropriate units are
sensitive to assumptions on investor utility and payoffs (Haddad, He, Huebner, Kondor, and Loualiche,
2025). Hence we use asset positions for now, and return to portfolio shares and relative demand later on.
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3.1 The Identification Challenge

The first step is to clearly describe the identification challenge for demand systems in

financial markets. To do so, we begin by deriving optimal portfolio choices (i.e., an in-

vestors’ asset demand functions) from decision problem (1). Denote by λi
n the Lagrange

multiplier associated with the n-th investment constraint, and by mi
n,j(ai, p) the partial

derivative of Mi
n(ai, p) with respect to ai

j. Recall that Λ̃i(z) is the taste-adjusted marginal

rate of substitution between date 0 and state z. Then investor i’s first-order necessary

condition for ai
j, her holdings of asset j, is

Fi
j (ai, p) ≡ θi

j ∑
z∈Z

yj(z)Λ̃i(z) + ∑
n

λi
n

mi
n,j(ai, p)

(1− δ)ui′(ci
0)
− pj = 0. (2)

Function Fi
j (·) has a natural interpretation as the marginal value of asset j net of the asset

price and the shadow cost of constraints. Consequently, the optimal portfolio choice is

determined by the condition that the net marginal value of every asset is equal to zero,

Fi(ai, p) ≡


Fi

1(ai, p)
Fi

2(ai, p)
...

Fi
J(ai, p)

 =


0
0
...
0

 .

Importantly, this system exhibits demand complementarities whereby the marginal

value of asset j generically depends on the quantities held of all other assets. Hence

the willingness to substitute across assets is an endogenous object that depends on the

entire vector of portfolio holdings. There are two natural sources of such complementar-

ities. The first is the canonical notion of diversification, whereby the marginal value of

an asset depends on its covariance with the rest of the investor’s portfolio. The second

is through constraints. If an investor faces a mandate to invest at least 50% of its assets

in technology stocks, buying more of any given technology stock relaxes the constraint

for all non-technology stocks. In either case, optimal asset positions, and the investor’s

willingness to substitute between assets, are inherently intertwined with each other.

To see how these considerations complicate inference of structural parameters, as-

sume that we have an ideal instrument in hand: a purely exogenous supply shock χs that

directly affects only asset s. For example, in line with instrumental variable strategy of
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Koijen and Yogo (2019), we might imagine that an outside investor has decided to adjust

her supply of asset s for purely exogenous reasons. Using our model, we can precisely

describe how the investor responds to this shock. We totally differentiate the system of

the first-order conditions Fi(ai, p) = 0 with respect to shock χs.

By the implicit function theorem, the optimal change of i’s portfolio in response to

an exogenous shock χs to asset s is then given by the system of equations

dai
1

dχs
...

dai
s

dχs
...

dai
J

dχs


=



∂ai
1

∂p1
· · · ∂ai

1
∂ps
· · · ∂ai

1
∂pJ

... . . . ... . . . ...
∂ai

s
∂p1

· · · ∂ai
s

∂ps
· · · ∂ai

s
∂pJ

... . . . ... . . . ...
∂ai

J
∂p1

· · · ∂ai
J

∂ps
· · · ∂ai

J
∂pJ





dp1
dχs
...

dps
dχs
...

dpJ
dχs


+



∂ai
1

∂χs
...

∂ai
s

∂χs
...

∂ai
J

∂χs


. (3)

This system formalizes the notion of cross-asset demand complementarities: while

asset s is the only security that is directly affected by the shock, the observed response to

the shock is the sum of endogenous quantity adjustments for all assets in the choice set.

These adjustments reflect two channels: (i) the degree of substitutability among assets

(shown in blue), which is endogenously determined from the marginal valuation of each

asset given the vector of asset positions, and (ii) endogenous price spillovers to other

assets (shown in red). The last term on the right-hand side captures income effects from

the revaluation of endowments. Going forward, we formally denote price spillovers by

Sjs ≡
dpj

dχs
.

The key empirical challenge is that the data does not directly reveal the structural

elasticity of interest. Instead, even with exogenous price variation in hand, observational

data on portfolio holdings show only the total derivative with respect to all margins of

adjustment. We call this object the observed elasticity Ê i
ss and note that it is equal to

Ê i
ss ≡ −

dai
s

dχs
dps
dχs

· ps

ai
s
.

In the next result, we decompose the observed elasticity into its structural compo-

nents: the sum over all assets of structural cross-elasticities multiplied by price spillovers,
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and the set of income effects that occur due to price changes. We focus mainly on the first

component since it poses a bigger identification challenge and can lead to large biases.6

Proposition 1 (Decomposition of the observed elasticity) The difference between the struc-

tural and observed own-price elasticities can be decomposed as follows:

Ê i
ss = E i

ss − ∑
j 6=s

Sjs
1
pj

Sss
1
ps

E i
sj︸ ︷︷ ︸

Complementarities
and spillovers

−
∂ai

s
∂χs

1
ai

s

Sss
1
ps︸ ︷︷ ︸

Income effects

. (4)

Proof. See Appendix A.

To understand this result, consider again our thought experiment from the intro-

duction, in which an investor can allocate funds between a bond and two stocks, say

Microsoft and Apple. If the two stocks are highly substitutable, the cross-elasticity E i
MA

is high and investors would rapidly switch to Apple in response to a price increase for

Microsoft. In equilibrium, a supply shock to Microsoft must therefore trigger a price

spillover to Apple. This price spillover makes it less appealing to substitute, driving

a wedge between the observed elasticity (which incorporates all adjustments) and the

structural elasticity (which presumes that all other prices remain fixed). Using the ob-

served elasticity as a measure of the structural elasticity can therefore lead to large biases.

Under heterogeneous tastes, moreover, the nature of cross-asset complementarities

is investor-specific. Hence asset demand systems typically estimate substitution patterns

at the level of the investor. However, there are also cross-investor interactions because

price spillovers depend on the marginal investor’s willingness to substitute across assets.

In principle, one can overcome the identification challenge by using multiple ob-

served data moments. In particular, exogenous variation in prices allows researchers to

measure observed elasticities and cross-elasticities for multiple assets. These observed

elasticities can then be used to construct estimators of the true elasticity. The approach

in Koijen and Yogo (2019) is to define a logit demand system in which demand is mea-

sured relative to an “outside asset.” Under the assumption of homogeneous substitution

between all assets (the standard Independence of Irrelevant Alternatives (IIA) property of

logit demand), observed elasticities of relative demand identify the associated structural

6Income effects can be eliminated by redefining the units of demand. Under iso-elastic utility, for exam-
ple, there are no income effects if one defines demand in terms of portfolio shares. See Section 3.2.
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elasticity. More recently, Haddad, He, Huebner, Kondor, and Loualiche (2025) show that

difference-in-difference estimators can be used to difference out cross-asset spillovers if

the portfolio choice problem admits a symmetric substitution matrix.

The limitation of these approaches is that they are valid only under strong sym-

metry assumptions that are unlikely to hold in standard portfolio choice settings, at least

without further conditioning information. In particular, in standard settings, substitution

patterns between inside assets (i) are generically heterogeneous across different assets,

both with respect to each other and the outside asset, and (ii) depend on interactions with

the rest of the investors’ portfolio. As such, the substitution matrix is endogenously deter-

mined alongside the asset portfolio itself. As we show next, violations of the assumption

of symmetric substitution can lead to large biases in the estimated elasticities.

3.2 Biased Elasticities in Logit Demand Systems for Financial Assets

We have shown that asset demand systems can accurately recover structural elasticities

only if they appropriately account for demand complementarities and price spillovers.

We now show that approaches based on the logit framework from Koijen and Yogo (2019)

do not satisfy this requirement for canonical portfolio choice models. As such, estimated

elasticities are subject to large biases. To make this argument, we must compare estimated

and structural elasticities. Our approach is to use our model to generate “data” and then

ask whether current methodologies accurately identify structural model parameters.

Asset menu. Solving for demand functions in arbitrary asset menus is complicated and

not necessary to make our points. Hence we consider a relatively sparse setting in which

there are only three assets: two inside assets which are the focus of the demand estima-

tion, and an outside asset towards which investors can substitute in response to shocks.

This setting is rich enough to capture many cross-asset substitution patterns of practical

interest, but sufficiently simple to derive closed-form expressions for many key objects of

interest. Furthermore, under specific parameter restrictions, logit demand can accurately

capture true model-derived demand functions.

Definition 2 (Three-asset economy) There are two aggregate states, z ∈ {1, 2}, and a distri-

butional shock ι ∈ {r, g} which further affects asset payoffs. The probability of state z is πz, and

the probability of distributional shock ι satisfies Pr(ι = r) = ρ. There are three assets:
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(i) Tree 2, which pays y(2) if and only if state 2 is realized. We will refer to this asset as the

outside asset, and normalize its price to p2 = 1. The aggregate endowment of this asset is 1.

(ii) A green tree with price pg which pays only in aggregate state 1, and pays more when ι = g.

The aggregate endowment of this asset is 1
2 + ψ, where ψ is an exogenous supply shifter.

(iii) A red tree with price pr which pays only in aggregate state 1, and pays more when ι = r.

The aggregate endowment of this asset is 1
2 .

The specific state-contingent payoffs of all three assets are summarized in Table 1.

State 1 (π1) State 2 (1− π1)Green shock (1− ρ) Red shock (ρ)

Tree 1 green y(1) + ε y(1)− ε 0red y(1)− ε y(1) + ε
Tree 2 0 y(2)

Table 1: Payoff structure in the three-asset economy.

We also make the following assumptions on investor endowments and constraints:

(i) Investors have the same initial endowments: ei
j = Ej and wi

0 = 0 = wi
1(z) for all i, j and z.

(ii) Investors care only about consumption at date 1: the discount factor is δ = 1.

Variation in the parameter ε allows us to capture a number of different scenarios.

If ε = 0, then green and red trees are perfect substitutes with respect to their cash flows.

Hence these parameter values capture investors who face a security menu with similar

assets, such as when they choose among similar stocks or derivative assets as well as

stock. The assets become more complementary as ε increases. Hence intermediate values

of ε capture when assets are complementary because they allow the investor to diversify

distributional risk, but investors are still willing to substitute between assets to some de-

gree because distributional risk is not too large. Finally, the limit ε → y(1) leads to three

distinct states of the world, each associated with a single tree that cannot be substituted

for each other. This maps into scenarios in which there are no diversification benefits be-

tween green and red trees at all, such as when we consider an investor choosing between

well-diversified portfolios each exposed to certain aggregate risk factors. Lastly, substi-

tutability is also modulated by latent taste parameters θi. Formally, these are unobserved

demand shifters that cannot be controlled for using data on asset cash flows alone.
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Logit specification. The logit demand system in Koijen and Yogo (2019) describes asset

demand in terms of portfolio shares ωi
j(p) ≡

pjai
j

Wi , where W i ≡ ∑j∈J pjai
j is the market

value of investor i’s portfolio. The relative portfolio share of asset j is the portfolio share of

asset j divided by the portfolio share of the outside asset, ωi
j(p)/ωi

2(p). Demand is speci-

fied in this manner because the logit demand system presumes that cross-asset spillovers

can be appropriately controlled for measuring demand relative to the outside good.7 The

underlying logic stems from the Independence of Irrelevant Alternatives (IIA) property

of logit demand, whereby substitution patterns are assumed to be homogeneous across

assets. However, this assumption is at odds with the heterogenous substitution patterns

that naturally arise in standard portfolio choice settings with demand complementarities.

Going forward, we adapt our definitions of elasticities to units of relative portfolio

shares as well. In particular, structural and observed elasticities are now given by

E i
jj ≡ −

∂(ωi
j(p)/ωi

2(p))

∂pj

pj

ωi
j(p)/ωi

2(p)
and Ê i

jj ≡ −
d(ωi

j(p)/ωi
2(p))

dpj

pj

ωi
j(p)/ωi

2(p)
.

Cross-elasticities of relative portfolio shares are defined in the analogous way.

Identification of logit demand. We first review the precise specification and identifi-

cation of logit demand systems for financial assets. In this approach, relative portfolio

shares are specified to be log-linear in log prices and a set of factor loadings (xk(j))k on

asset characteristics.8 Characteristics are used to summarize key properties of expected

returns and the variance-covariance matrix of returns. Specifically, in Koijen and Yogo

(2019), investor-level relative portfolio shares are assumed to satisfy the demand function

ωj(p)
ω2(p)

=
ωj

ω2
(pj) = exp

{
β0 log pj +

K−1

∑
k=1

βkxk(j) + βK

}
ζ(j), (5)

where β0 is the coefficient on the log price of asset j, xk(j) is asset j’s loading on the k-th

characteristics-based factor, (βk)
K−1
k=1 are the associated demand coefficients, and βK and

7Given iso-elastic utility, working with portfolio shares has the additional benefit that supply shocks
do not create direct income effects. Haddad, He, Huebner, Kondor, and Loualiche (2025) provide a more
general taxonomy of the “natural units” of analysis for different utility functions.

8Technically, β0 is the coefficient of log market equity, where market equity is the product of price and
number of shares. This ensures neutrality to variation in the level of prices that is not economically mean-
ingful, such as different choices for the initial number of shares in a firm. However, if the number of shares
is constant, this term is another additive constant. Hence we focus simply on log prices.
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ζ(j) are demand shifters for all inside assets and asset j, respectively. The latent asset-

specific demand parameter ζ(j) corresponds to tastes θj in the context of our model.

A useful geometric interpretation of (5) is that β0 measures the slope with respect

to the own price, and all other demand shifters jointly determine the intercept. The key

identifying assumption is that all demand shifters other than pj are invariant to exoge-

nous variation in pj. Under this assumption, one can identify slope coefficient β0 from the

observed relative elasticity. In particular, totally differentiating (5) with respect to price pj

yields β0 = Ê i
jj, and this parameter recovers the structural elasticity as well, β0 = E i

jj. This

logic is shown in the left panel of Figure 1, where the observed change in relative portfo-

lio weights of a given asset is treated as a move along a fixed demand curve. Appendix C

characterizes how β0 determines the absolute elasticity of demand for asset j, not just the

relative demand elasticity with respect to the outside good. In the context of our model,

the absolute elasticity is also precisely equal to β0.

Biased Measurement. Of course, logit demand systems fail to recover the structural

elasticity if there are cross-asset spillovers and demand complementarities. This logic is

depicted in the right panel of Figure 1, which incorporates the fact that a shock to one

asset affects demand for other assets via complementarities and spillovers, triggering a

shift in the demand curve. This effect is not captured in the logit demand system because

factor loadings and characteristics, which proxy for expected returns and covariances,

are assumed to be invariant to instrumented price shocks to a given asset. Given this

restriction, observed elasticities are interpreted as determining the slope of demand.9

When complementarities exist, the observed elasticity is a biased estimator of the

structural elasticity. The next result shows that the bias is directly proportional to com-

plementarities and spillovers. Our formal definition of demand complementarities is that

relative demand for asset j is affected by the prices of other assets, i.e.,
∂
(

ωi
j(p)/ωi

2(p)
)

∂p−j
6= 0

in our three-asset economy, where p−j is the price of the other inside asset.

Proposition 2 (Biased measurement of structural elasticities) Consider the three-asset econ-

9This restriction is derived under the assumption that returns are well-described by factor loadings.
However, returns are endogenous objects that should respond to price changes.
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omy. For investor i, the bias Bi
jj ≡ E i

jj − Ê i
jj between structural and observed elasticities is

Bi
jj = −

∂
(

ωi
j(p)/ωi

2(p)
)

∂p−j︸ ︷︷ ︸
Complementarity

p−j(
ωi

j(p)/ωi
2(p)

) pj

p−j︸ ︷︷ ︸
Scaling terms

dp−j

dpj︸ ︷︷ ︸
Price Spillover

. (6)

Proof. See Appendix A.

The scaling terms ensure that the bias is reported in units of elasticities. We recover

the logit identification result if and only if there are no complementarities or spillovers.

Conversely, the bias from using logit demand is large when inside assets are very close

substitutes (and thus much better substitutes for each other than for the outside asset).

Indeed, we show formally that the bias diverges to infinity if inside assets are perfect

substitutes, but zero if all assets are equally complementary.

To derive these results, we use our models to characterize structural demand elas-

ticities under the optimal demand functions for our setting. To make these demand func-

tions easier to interpret, we assume that there is no aggregate risk, y(z) = 1, although this

is not necessary for any of the results to come. We have the following characterization.

Lemma 1 (Optimal portfolio shares) Let y(1) = y(2) = 1. Given relative prices (pg, pr)

and taste parameters (θi
g, θi

r), the optimal relative portfolio shares for investor i are given by

ωi
g(pg, pr)

ωi
2(pg, pr)

= θi
r
π1

π2
pg ·

(θi
r pg + θi

g pr)ε2 − (θi
r pg − θi

g pr) + 2θi
g prε(1− 2ρ)

(θi
r pg + θi

g pr)2ε2 − (θi
r pg − θg pr)2 ; (7)

ωi
r(pg, pr)

ωi
2(pg, pr)

= θi
g

π1

π2
pr ·

(θi
r pg + θi

g pr)ε2 + (θi
r pg − θi

g pr)− 2θi
r pgε(1− 2ρ)

(θi
r pg + θi

g pr)2ε2 − (θi
r pg − θi

g pr)2 . (8)

Proof. See Appendix A.

The critical feature of these demand functions is that they exhibit cross-asset com-

plementarities, whereby the demand for green and/or red assets depends on the prices

and tastes of both inside assets. As such, supply shocks to one asset alter relative portfolio

shares of both assets, with the degree of complementarity influenced by parameter ε.

The next result formally characterizes the estimation bias that obtains when using

the observed elasticity as an estimator for the structural elasticity. To derive this result, we
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assume that we have access to a perfect asset-level instrument, namely a purely exoge-

nous shock ψ to the supply of the green asset. While not necessary for the results, to ob-

tain easily interpretable conditions for the bias we assume that all investors have the same

tastes, θi
j = 1, and that both aggregate states are symmetric, π1 = 1

2 and y(1) = y(2) = 1.

Proposition 3 (Measured vs Structural Elasticities) Let y(z) = 1 = θi
j and πz = 1

2 . Given

an exogenous supply shock ψ around ψ = 0, for any i, observed and structural elasticities are:

Ê i
gg =

(1− ε2)

(1 + ε)2 − 4ερ
and E i

gg =
(1− ε2)(1− ε(1− 2ρ))

8ρ(1− ρ)ε2 . (9)

In the limit as green and red assets become perfect substitutes, we have:

lim
ε→0
Ê i

gg = 1 and lim
ε→0
E i

gg = ∞. (10)

For any ε > 0, the bias, i.e., the difference between structural and observed elasticities, is

Bi
gg =

(1− ε2)2(1 + (1− 2ρ)ε)

8ε2ρ(1− ρ)((1 + ε)2 − 4ερ)
. (11)

The bias is positive, goes to infinity as ε→ 0, is strictly decreasing in ε, and is zero iff ε = 1.

Proof. See Appendix A.

Figure 3 illustrates the result. Measured elasticities are small throughout and of

the same order of magnitude as leading estimates in the demand-system literature. In

contrast, the structural elasticity approaches infinity as ε goes to zero (such as when inside

assets are closely substitutable), but is zero when ε = 1. This means that the measured

elasticity is not closely related to the underlying structural elasticity.

To understand the intuition for this disconnect, consider the case where the two

inside assets are close substitutes, ε ≈ 0. (Note that, in the extreme case where ε = 0,

any change in the green asset’s price leads to an immediate arbitrage opportunity relative

to the red asset.) Precisely because investors would like to respond to the green supply

shock by buying more of the red asset, the red price must adjust to clear the market.

Given this price spillover, it becomes less attractive to substitute across assets, leading

to low measured elasticities in response to the shock. However, the reason that prices

adjust in this manner is precisely that each individual investor would have responded

very elastically had prices not adjusted.
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Figure 3: Measured vs structural elasticity given an exogenous supply shock ψ as ψ → 0. The measured
elasticity is Ê i

gg. The structural elasticity is E i
gg. Parameters: π1 = 1

2 , y(1) = y(2) = 1, θi
j = 1, and ρ = 1

4 .

Our findings thus align directly with the basic mechanism of neoclassical finance:

if financial markets rapidly reprice substitute assets in response to shocks, equilibrium

portfolio responses may suggest very low elasticities even when the structural elasticity

is high. The reason is that individual demand responses are strategic substitutes: when

other investors adjust their portfolios, the resulting price response implies that any indi-

vidual investor will rebalance her portfolio less than she otherwise would. Hence low

observed elasticities are not dispositive evidence that financial markets are indeed slow

to respond to profitable trading opportunities.

While the bias is strictly positive, it is decreasing in ε and converges to zero in

the limit as ε → 1. In this limit, inside assets are not substitutable: the payoff structure

features three states, each of which are associated with a single asset. Hence substitution

between inside assets is symmetric to substitution with the outside asset, and demand

complementarities and cross-asset spillovers are immaterial. As a result, logit demand

accurately captures the underlying substitution patterns.

As such, our analysis also admits a more positive interpretation: while the bias is

severe when close substitutes are available, it may be more muted when investors face

choice sets with limited substitutability, as may be the case in international finance or for-

eign exchange (Jiang, Richmond, and Zhang, 2023; An and Huber, 2024; Koijen and Yogo,

2020).10 Nevertheless, substitutability is ultimately a latent variable that must be esti-

10Limited substitutability can also stem from tastes. Investors with a taste for one asset may not reallocate
to another asset in response to a price shock to their preferred asset. See Section 4.2 for an example.
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mated from data. Our results suggest that logit demand cannot accurately discriminate

between varying degrees of substitutability: the measured elasticity ranges from zero to

one while the structural elasticity ranges from zero to infinity.

More generally, an ideal estimation procedure would control for spillovers by es-

timating a fixed point between individual demands and the matrix of spillovers. While

theoretically appropriate, the implementation of such a fixed-point approach may be chal-

lenging. Price spillovers depend on the market-wide degree of substitutability between

assets, which in turn depends on the unobserved cross-sectional distribution of taste pa-

rameters. Hence researchers would have to jointly estimate the spillover matrix along-

side individual demand functions, checking for consistency using market clearing. This

means that demand systems may be simpler to estimate for more aggregated portfolios,

such as stocks versus bonds, where cross-asset spillovers are likely to be relatively small.

However, it may also be more difficult to find instruments for such settings.

Remark 1 (Aggregation from “Micro-logit” to Asset-level Elasticities) We have derived es-

timation biases at the level of the individual investor (“micro logit”). One could also derive stock-

level elasticities by averaging across investors. This does not solve the identification problem: since

investor-level elasticities are always underestimated, so are asset-level elasticities. In the specific

setting of Proposition 3, asset-level elasticities are identical to the asset-investor-level elasticity.

More generally, one can consider variations on our economy with heterogeneous investors.

For example, some investors may have a strong taste for green assets, while the remainder have

no specific taste for either asset (as in the baseline). In this case, investors with a taste-based

preference for a given asset will exhibit low (or even zero) structural elasticities, which the logit

demand system will identify relatively accurately. However, it will fail to accurately identify

the elasticity of the investors without specific tastes. Furthermore, precisely because taste-based

investors are less willing to substitute, non-taste investors will be the marginal investors whose

preferences determine the relative prices of green and red assets (and thus the asset-level price

response to shocks). Hence estimated asset-level demand elasticities will again be severely biased.

3.3 Control Variables

One suggested approach to the problem of heterogeneous substitution and spillovers is

the use of control variables. For instance, a supply shock to a given asset may trigger
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spillovers primarily to other assets with similar factor exposures. In this case, controlling

for common factor exposures mitigates the resulting asymmetry in substitution.

While useful for estimating certain parameters of interest, controls directly alter the

object of analysis by changing the degree of substitutability between choices. In particu-

lar, two assets may be highly substitutable precisely because they have common exposures.

In this case, controlling for common exposures yields demand elasticities defined over the

residual cash flows unaccounted for by controls, rather than asset-level elasticities. More-

over, if residual cash flows are less substitutable than the asset, residual elasticities are

lower and may carry little information about asset elasticities. Hence control-variables

approaches are informative about asset demand only under additional assumptions.

We next illustrate this effect in the context of risk-based portfolio choice when as-

set payoffs obey a factor structure.11 Substitutability is determined by covariances: assets

are substitutable if cash flows covary positively, and complementary when they covary

negatively. Hence conditional and unconditional substitutability differ whenever the con-

ditional and unconditional covariances differ. If these differences are large, conditional

demand functions are not informative about asset-level demand functions.

Example 1 (Controlling for exposures) Let asset cash flows Yj follow as single-factor model,

Yj = β jF + ηj,

where F ∼ N (µ, σ2) is the single factor, β j asset j’s loading on the factor and ηj is mean-zero

noise that is uncorrelated across assets. Then the covariance of cash flows for two assets a and b is

Cov(Ya, Yb) = βaβbσ2, (12)

while the covariance conditional on the factor is zero,

Cov(Ya, Yb | F) = 0.

Hence the residual cash flows are more complementary than the asset as a whole if

Cov(Ya, Yb | F) < Cov(Ya, Yb), that is, βaβb > 0.
11Factors are common control variables because they allow researchers to hold fixed certain risk expo-

sures. The underlying logic is based on no arbitrage pricing of risk exposures. However, allowing for
heterogeneous tastes may invalidate no arbitrage: see Appendix B.
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Under relatively weak assumptions, knowledge of (taste-adjusted) factor loadings

may be sufficient to determine the sign of the difference between residual and asset-level

demand elasticities. For example the residual elasticity is likely to be lower than the

asset-level elasticity if βaβb > 0 and higher if βaβb < 0. However, the precise quantitative

mapping between the two depends on a number of (unobserved) variables, including the

perceived contribution to total variance of the controls, the investor’s demand elasticities

over the subset of asset cash flows correlated with the controls, and the interaction of

each asset with the rest of the investor’s portfolio. Moving from residual elasticities to

asset-level elasticities therefore requires additional, potentially strong, assumptions.

In Appendix D, we formally characterize the informativeness of residual and factor-

level demand elasticities in the context of our model. We decompose payoffs into factors

and introduce small idiosyncratic noise. This allows us to explicitly model demand func-

tions for factors and for residual cash flows. Under standard assumptions, factor demand

elasticities are zero and residual elasticities are equal to one independently of the underly-

ing asset-level elasticity. Since the asset-level elasticity ranges from zero to infinity, factor

and residual demand elasticities carry little information about asset-level demand.

These findings relate to Haddad, He, Huebner, Kondor, and Loualiche (2025), who

argue that conditioning information can be used to obtain settings with specific symme-

try properties. Specifically, if the asset menu does not satisfy symmetry unconditionally,

judicious controls may yield a decision problem that is symmetric conditional on controls.

Given such symmetry, they show that a difference-in-difference estimator identifies the

relative elasticity between two assets subject to symmetric spillovers (namely, the change

in the demand difference between the two assets given a change in the price difference).

However, this procedure does not recover the absolute elasticity, and it works only if sub-

stitution patterns are symmetric across all assets within the asset menu, as well as with

outside assets. In practice, this assumption is unlikely to hold without conditioning in-

formation.12 Using controls leads to an estimate of the residual relative elasticity.

12While their symmetry assumption is satisfied in our example economy, small perturbations of the pay-
off structure which break symmetry can lead to very large biases. These results are available upon request.
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4 Are Elasticities Structural Parameters?

The previous section discussed the measurement and interpretation of demand elastici-

ties, but stopped of establishing whether asset demand elasticities are structural parame-

ters that are invariant to counterfactuals, even if they are well-measured. This is a critical

concern if asset demand systems are to be used to inform policy.

We discuss two main challenges. The first is that investors care about the resale

value of their assets. Hence demand elasticities reflect not only the investor’s individual

tastes for an asset, but also her expectations about other investors’ future valuations. Sec-

ond, it is difficult to separately identify unobserved tastes and constraints. The standard

logit asset demand system cannot separately identify these different sources of demand,

since all unobserved variation is summarized using a single “latent demand” parameter.

However, many counterfactuals are sensitive to the precise microfoundation.

4.1 Dynamic trading: whose preferences are being measured?

We begin by discussing the role of resale considerations. Forward-looking demand makes

it difficult to separately identify individual and “market-wide” tastes because investors

may buy an asset they personally dislike if they expect other investors will pay a high

price for it (Keynes, 1936; Harrison and Kreps, 1978). However, counterfactuals involving

shifts in the wealth distribution require knowledge of individual preferences.

In Appendix E we formally construct a simple two-period variant of our baseline

framework for the special case where green and red trees have identical cash flows (ε =

0), but variation in tastes creates variation in prices. Here, we only report the key equation

determining asset demand in the first period.

Let pj,1 denote the price of asset j at date 1, Rj the gross return of asset j between

dates 1 and 2, and W i
2 the investor’s wealth at date 2. Given discount factor δ, an interior

choice of ai
j,1, the investor i’s holdings of asset j at date 1, must satisfy

π1y(1)θi
j,1

pj,1
u′
(

c̃i
1(1)

)
= π2y(2)u′

(
c̃i

1(2)
)
+

δ

1− δ
Ei

[
R2 − Rj

W i
2

]
. (13)

The left-hand side is the date-1 marginal benefit of buying asset j at current price

pj,1 in state 1. The parameter θi
j,1 is investor i’s taste for asset j at date 1. The right-hand

25



side consists of two components: the marginal loss from consuming less in state 2 at

date 1, and the expected return reduction from carrying wealth forward in the form of

tree j rather than tree 2. Hence demand is increasing in both private tastes and expected

market returns. Since market returns are determined by the tastes of tomorrow’s marginal

investor, observed demand elasticities do not reveal whether an investor is buying based

on her tastes or her beliefs over market-wide tastes.

4.2 Tastes versus constraints

Next we consider the interpretation of observed elasticities when investors differ in both

tastes and unobservable investment mandates. To this end, we study our baseline econ-

omy but assume that there are two types of investors: some prefer green to red, and the

rest prefer red to green. “Green investor” owns a share γ of the aggregate endowment of

every tree. This allows us to model counterfactual wealth distributions.

To ensure equilibrium existence, we assume that each investor faces short-sale con-

straints. Moreover, we assume that a share m of each type faces a strict mandate to only

invest in their preferred trees (i.e., a green investor with a mandate cannot buy red trees).

This mandate is unobserved to the econometrician. All derivations are in Appendix F.

Since investors have different tastes, the equilibrium may feature sorting. In par-

ticular, if diversification motives are sufficiently small (ε ≈ 0) and green investors are not

too wealthy (γ ≤ γ for some γ), all green investors buy only green assets. In a sorting

equilibrium, green investors without a mandate are observationally equivalent to green

investors with a mandate. However, sorting breaks down when assets are complemen-

tary (ε� 0) or when green investors are wealthy (γ > γ), pushing up the green price.

Figure 4 shows the equilibrium green price pg as a function of the wealth share

γ and complementarity ε for two economies: one in which very few investors face a

mandate (left panel), and the other with many constrained investors (right panel).

The two economies are observationally equivalent near the origin where uncon-

strained investors choose to specialize in their preferred color to the same extent as man-

date investors. However, they differ sharply under counterfactual wealth distributions or

payoff structures. For unconstrained investors, a shock to ε creates more demand for di-

versification. In the left panel, the price of green trees is thus decreasing in ε when green

investors choose to hold inside assets. In contrast, mandate investors do not buy red trees
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Figure 4: Green Price. Left: Mandate Share m = 0.01. Right: Mandate Share m = 0.85.

at any price. In the right panel, the price of green trees thus increases in ε. Hence, the two

economies are observationally equivalent for some parameters, but qualitatively different

under counterfactuals. Hence researchers should be cautious when assessing counterfac-

tuals using demand systems that cannot separately identify tastes and constraints.

5 Conclusion

We present an analysis of demand systems for financial assets. Our results highlight the

critical role of heterogeneous demand complementarities and equilibrium price spillovers.

Specifically, we show that a failure to properly account for these effects can lead to severe

biases in measured elasticities. This offers a simple reconciliation of the striking difference

between demand elasticities in demand-system approaches and canonical benchmarks.

We see two main paths for future work. The first is to develop new structural

frameworks that can account for richer cross-asset interactions. This could involve find-

ing applications with additional data or structure, as in Allen, Kastl, and Wittwer (2025).

The second is to develop empirical tests to bound the estimation biases that we discuss.
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A Proofs

Proof of Proposition 1. First, it follows from (the s-th row of) equation (3) that

dai
s

dχs
=

∂ai
s

∂ps

dps

dχs
+ ∑

j 6=s

∂ai
s

∂pj

dpj

dχs
+

∂ai
s

∂χs
.

Second, multiplying both sides by − 1
dps
dχs

ps
ai

s
and noting the definitions of Ê i

ss, E i
ss, Sjs, and

Sss, we have:

Ê i
ss = E i

ss −

∑
j 6=s

∂ai
s

∂pj

Sjs

Sss

ps

ai
s
+

∂ai
s

∂χs

Sss

ps

ai
s

 .

Third, then, rearranging, we obtain equation (4).

Proof of Proposition 2. Observe that the structural elasticity can be rewritten as:

E i
jj = −

∂ log
(

ωi
j(p)

ωi
2(p)

)
∂pj

pj = −
(

∂ωi
j(p)

∂pj

pj

ωi
j
− ∂ωi

2(p)
∂pj

pj

ωi
2

)
.

In contrast, the measured elasticity is written as:

Ê i
jj = −

d log
(

ωi
j(p)

ωi
2(p)

)
dpj

pj = −
(

dωi
j(p)

dpj

pj

ωi
j
− dωi

2(p)
dpj

pj

ωi
2

)

= −
(

∂ωi
j(p)

∂pj

pj

ωi
j
− ∂ωi

2(p)
∂p−j

pj

ωi
2

)
−
(

∂ωi
j(p)

∂p−j

pj

ωi
j
− ∂ωi

2(p)
∂p−j

pj

ωi
2

)
dp−j

dpj
.

Hence,

Bi
jj = E i

jj − Ê i
jj = −

(
∂ωi

j(p)

∂p−j

p−j

ωi
j
− ∂ωi

2(p)
∂p−j

p−j

ωi
2

)
pj

p−j

dp−j

dpj

= −
∂
(

ωi
j(p)/ωi

2(p)
)

∂p−j

p−j(
ωi

j(p)/ωi
2(p)

) pj

p−j

dp−j

dpj
,

as desired.

Proof of Lemma 1. Observe that, under y(1) = y(2) = 1, the first-order conditions with
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respect to ai
g and ai

r can be rewritten as

pg =
π1(1− ρ)

π2

(1 + ε)θi
gai

2

(1 + ε)θi
gai

g + (1− ε)θi
rai

r
+

π1ρ

π2

(1− ε)θi
gai

2

(1− ε)θi
gai

g + (1 + ε)θi
rai

r
; (14)

pr =
π1(1− ρ)

π2

(1− ε)θi
rai

2
(1 + ε)θi

gai
g + (1− ε)θi

rai
r
+

π1ρ

π2

(1 + ε)θi
rai

2
(1− ε)θi

gai
g + (1 + ε)θi

rai
r
. (15)

Substituting the budget constraint

ai
2 = pgei

g + prei
r + ei

2 − pgai
g − prai

r

and solving for (ai
g, ai

r), we obtain:

ai
g = θi

rπ1 ·
(pgei

g + prei
r + ei

2)
(
(θi

r pg + θi
g pr)ε2 − (θi

r pg − θi
g pr) + 2θi

g prε(1− 2ρ)
)

(θi
r pg + θi

g pr)2ε2 − (θi
r pg − θi

g pr)2 ; (16)

ai
r = θi

gπ1 ·
(pgei

g + prei
r + ei

2)
(
(θi

r pg + θi
g pr)ε2 + (θi

r pg − θi
g pr)− 2θi

r pgε(1− 2ρ)
)

(θi
r pg + θi

g pr)2ε2 − (θi
r pg − θi

g pr)2 . (17)

We then obtain the portfolio weights (ωi
g, ωi

r) in equations (7) and (8), respectively.

Proof of Proposition 3. First, observe that the representative agent (thus we suppress

the superscript i) consumes the aggregate endowment in equilibrium. Thus, under the

assumptions that y(1) = y(2) = 1, π1 = 1
2 , and no tastes, the first-order conditions yield:

pg = (1− ρ)
1 + ε

1 + (1 + ε)ψ
+ ρ

1− ε

1 + (1− ε)ψ
;

pr = (1− ρ)
1− ε

1 + (1 + ε)ψ
+ ρ

1 + ε

1 + (1− ε)ψ
.

Then, the change in prices ∆pg ≡ pg − p0
g satisfies:

∆pg ≡ pg − p0
g = −1 + ε2 + (1− ε2)ψ + (1− 2ρ)(2 + (1− ε2)ψ)ε

(1 + (1 + ε)ψ)(1 + (1− ε)ψ)
ψ.

When ε = 0, we have pg = 1
1+ψ , p0

g = 1, and ∆pg = − ψ
1+ψ .

Second, substituting the equilibrium prices into the portfolio weight function ωg
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yields the equilibrium portfolio weights of green tree:

ωg =
1 + 2ψ

4
· 1 + ψ + ε(1− 2ρ− εψ)

(1 + (1 + ε)ψ)(1 + (1− ε)ψ)
;

ω0
g =

1
4
(1 + (1− 2ρ)ε) ;

∆ωg ≡ ωg −ω0
g =

1
4
· (1− ε2)ψ(1 + ψ− ε(1− 2ρ)ψ)

(1 + (1− ε)ψ)(1 + (1 + ε)ψ)
.

In the limit as ε = 0, we have ωg = 1+2ψ
4(1+ψ)

, ω0
g = 1

4 , and ∆ωg = ψ
4(1+ψ)

.

Third, the measured elasticity reduces to

−
∆ωg

∆pg

p0
g

ω0
g
=

(1− ε2)(1 + ψ− ε(1− 2ρ)ψ)

1 + ε2 + (1− ε2)ψ + (1− 2ρ)(2 + (1− ε2)ψ)ε
. (18)

In the limit as ψ → 0, we obtain the first equation in (9). Also, in the limit as ε → 0, the

measured elasticity tends to the first equation in (10).

Forth, to compute the structural elasticity, we can compute

−
∂ωg

∂pg

pg

ωg

as a function of (pg, pr) when (eg, er, e2) = (1
2 + ψ, 1

2 , 1). Note that, since ωg does not

depend on (eg, er, e2), this term does not depend on (eg, er, e2), i.e., ψ. Then, evaluating

this at the initial equilibrium prices (p0
g, p0

r ), the structural elasticity is given by the second

equation in (9), which goes to infinity as ε→ 0, establishing the second equation in (10).

Fifth, as in Proposition 1, we can decompose the measured demand response (in

the limit as ψ→ 0) as the true response and the bias term:

dωg
dψ

d log pg
dψ

=

∂ωg
∂ log pg

d log pg
dψ +

∂ωg
∂ log pr

d log pr
dψ

d log pg
dψ

=
∂ωg

∂ log pg
+

∂ωg

∂pr

dpr
dψ

d log pg
dψ

.

Then, we can decompose the measured elasticity (in the limit as ψ→ 0) into the structural

elasticity and the bias term:

−
dωg
dψ

d log pg
dψ

pg

ωg
= −

∂ωg

∂ log pg

pg

ωg
−

∂ωg

∂pr

dpr
dψ

d log pg
dψ

pg

ωg
.
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Consequently, the measured elasticity in the limit as ψ→ 0 is:

−
dωg
deg

dpg
deg

pg

wg
=

(1− ε2)

(1 + ε)2 − 4ερ
,

which coincides with the limit of equation (18) as ψ→ 0. In the limit ψ→ 0, the bias is:

∂ωg

∂pr

dpr
dψ

d log pg
dψ

pg

ωg
=

(1− ε2)2(1 + (1− 2ρ)ε)

8ε2ρ(1− ρ)((1 + ε)2 − 4ερ)
. (19)

It follows from equation (19) that the bias is positive (when ε < 1) and goes to

infinity as ε→ 0. Also, the derivative of the bias term with respect to ε is

− (1 + ε)4 + 2ε(1− ε)(1 + ε)2(7 + ε)(1 + ε2)ρ + 16ε2(1− ε4)ρ2

8ε3ρ(1− ρ) ((1 + ε)2 − 4ερ)
2 < 0,

which establishes that the bias is strictly decreasing in ε.

B No Arbitrage with Tastes

In many applications, researchers aim to control for certain risk exposures or use a low-

dimensional factor representation of the matrix of expected returns to model demand.

No arbitrage is used to ensure that assets are priced according to their risk exposures. We

now discuss the relation between taste heterogeneity and the principle of no arbitrage.

In the standard definition, investors care only about cash flows and an arbitrage

is “an investment strategy that guarantees a positive payoff in some contingency with

no possibility of a negative payoff and no initial net investment” (Ross, 2004). When

investors differ in tastes, they have subjective views on the payoffs of a given trade.

To define no arbitrage with tastes, we provide two preliminary definitions. First,

letting a vector subspace A of RJ denote the set of feasible portfolios and letting (pj)j∈J

be a price vector of individual assets, the pricing function P : A → R maps a portfolio

a = (aj)j∈J into its price according to P(a) ≡ ∑j∈J pjaj. Second, investor i has a linear

taste function vi : A → RZ that maps a portfolio a into a vector vi(a) of state-contingent

taste-augmented payoffs for investor i. Specifically, letting Yi ≡ (θi
jyj(z))z,j be the Z × J

matrix of investor i’s payoff-augmented cash flows, vi(a) ≡ Yia. This generalizes the
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neoclassical approach in which θi
j = 1 for all j. We then have the following definition.

Definition 3 (No Arbitrage with Tastes) Let taste functions vi be given for all investors i. The

pricing function P leaves no arbitrage opportunities if, for any investor i and any portfolio a ∈ A
such that the effective payoff is weakly positive almost surely (i.e., vi(a) ≥ 0) and strictly positive

with strictly positive probability (i.e., vi(a) > 0), the associated price is positive: P(a) > 0.

That is, pricing function P leaves no arbitrage opportunities given taste functions

(vi)i if and only if, for every i, the pricing function P leaves no arbitrage opportunities in

the standard sense if the cash-flow matrix is replaced by the taste-augmented payoff ma-

trix. The key difficulty is that this payoff matrix is investor-specific. The main restriction

is that taste functions are linear, as they are in Koijen and Yogo (2019).

Theorem 1 (Generic Arbitrage Opportunities with Tastes) Fix taste functions vi for all i.

There does not exist a pricing function P that leaves no arbitrage opportunities if:

there exist a, i, and i′ such that vi(a) > 0 and 0 ≥ vi′(a). (C)

A sufficient condition for (C) is that there exist assets j and j′ such that

(i) both assets have identical cash flows:

yj(z) = yj′(z) for all z ∈ Z ;

(ii) there exist investors i and i′ with sufficiently heterogeneous tastes with respect to these assets:

θi
j > θi

j′ and θi′
j ≤ θi′

j′ .

Proof. We first show that there does not exist a pricing function P that leaves no arbitrage

opportunities if (C) holds. We then establish the stated sufficiency condition for (C).

Suppose first that (C) holds. Generically, we can assume that vi(a) > 0 and vi′(a) <

0. Now, suppose to the contrary that there exists a pricing function P that leaves no

arbitrage opportunities. Applying Definition 3 to investor i yields P(a) > 0. But applying

Definition 3 to investor i′ yields P(−a) > 0, i.e., P(a) < 0. This is a contradiction.

Next, suppose that the stated conditions hold: there exist two assets j and j′ and

two investors i and i’ satisfying the two conditions. Denoting by vi
j ≡ (θi

jyj(z))z investor
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i’s marginal taste with respect to asset j, the two conditions imply:

vi
j > vi

j′ and vi′
j ≤ vi′

j′ . (C’)

It is then sufficient to show that (C’) implies condition (C). Let a ∈ RJ be such that

a` =


1 if ` = j

−1 if ` = j′

0 otherwise

.

Then, we obtain vi(a) = vi
j − vi

j′ > 0 and vi′(a) = vi′
j − vi′

j′ ≤ 0, as desired.

The following example provides a simple illustration consistent with our model.

Example 2 (Green and Red Assets) There are a green asset and a red asset with prices denoted

by pg and pr, respectively. Both assets deliver a unit payoff with certainty. There are two investor

types, denoted by α and β, that differ in their relative taste for the two assets. For each investor

type i, the taste function is given by vi(ag, ar) = θi
gag + θi

rar with the following properties: while

type α’s taste-augmented payoffs for green and red assets satisfy θα
g > θα

r , type β has θ
β
g < θ

β
r .

Then there are no prices such that both investors agree on the value of a long-short portfolio selling

one unit of the green asset and buying one unit of the red asset.

C Computing the absolute elasticity given β0

In the baseline logit model, the key estimation equation is written in terms of portfolio

shares relative to the outside good. We now show how β0 can be used to back out the

absolute elasticity of the portfolio share of asset j, ∂ log(ωj)/∂ log(pj) given knowledge

of the demand for the outside asset.

Consider J − 1 inside assets and one outside asset. Let o denote the outside asset.

For any inside assets j and k with j 6= k, the logit demand system assumes that

0 =
∂

∂ log pk
log
(

ωj

ωo

)
(p) =

∂ log ωj(p)
∂ log pk

− ∂ log ωo(p)
∂ log pk

.

Thus, we obtain:
∂ log ωj(p)

∂ log pk
=

∂ log ωo(p)
∂ log pk

.
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This equation means that, for the j-th row of the elasticity matrix
(

∂ log ωj(p)
∂ log pk

)
j,k

, the (j, k)-

th element (with k 6= j) is
∂ log ωo(p)

∂ log pk
,

which does not depend on j. For the (j, j)-element of the elasticity matrix, we have

∂

∂ log pj
log
(

ωj

ωo

)
(p) =

∂ log ωj(p)
∂ log pj

− ∂ log ωo(p)
∂ log pj

.

Under the assumption of the logit demand system that

∂

∂ log pj
log
(

ωj

ωo

)
(p) = β0,

we have:
∂ log ωj(p)

∂ log pj
= β0 +

∂ log ωo(p)
∂ log pj

.

We then obtain the following elasticity matrix:

β0 +
∂ log ωo(p)

∂ log p1

∂ log ωo(p)
∂ log pj

· · · · · · ∂ log ωo(p)
∂ log pJ−1

∂ log ωo(p)
∂ log p1

β0 +
∂ log ωo(p)

∂ log p2
· · · · · · ∂ log ωo(p)

∂ log pJ−1
∂ log ωo(p)

∂ log p1

∂ log ωo(p)
∂ log p2

· · · · · · ∂ log ωo(p)
∂ log pJ−1

...
... . . . ...

∂ log ωo(p)
∂ log p1

∂ log ωo(p)
∂ log p2

· · · · · · β0 +
∂ log ωo(p)
∂ log pJ−1


.

Letting vj be such that ∂ log ωo(p)
∂ log pj

= −vjβ0, the elasticity matrix reduces to:



(1−v1)β0 −v2β0 · · · · · · −vJ−1β0

−v1β0 (1−v2)β0 · · · · · · −vJ−1β0

−v1β0 −v2β0 · · · · · · −vJ−1β0
...

... . . . ...
−v1β0 −v2β0 · · · · · · (1−vJ−1)β0


.

Given information on demand elasticities for the outside asset, we can then compute the
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elasticity in absolute terms. In the three-asset economy, the elasticity matrix is:

β0 +
∂ log ω2(p)

∂ log pg

∂ log ω2(p)
∂ log pr

∂ log ω2(p)
∂ log pg

β0 +
∂ log ω2(p)

∂ log pr

 =


(

1−
− ∂ log ω2(p)

∂ log pg
β0

)
β0 −

− ∂ log ω2(p)
∂ log pr
β0

−
− ∂ log ω2(p)

∂ log pg
β0

(
1−

− ∂ log ω2(p)
∂ log pr
β0

)
β0

 .

In our model, we can also directly compute the optimal demand for the outside

asset. Under log utility, it is trivial that ω2 = π2. Hence the the elasticity matrix is[
β0 0
0 β0

]
.

D Residual and Factor Demand Elasticities

In this appendix, we formally characterize the difference between asset-level elasticities

and residual elasticities in the context of our model. We will show that neither factor-level

demand functions nor residual demand functions accurately inform asset-level demand

elasticities. To ensure that no arbitrage holds (as is required for control variables based

on factor exposures), we assume that investors do not have heterogeneous tastes, θi
j = 1.

We begin by decomposing the payoff structure from Table 1 into underlying fac-

tors. For pedagogical purposes, assume that the factors are Arrow securities on the states.

Since there are two aggregate states and a distributional shock, the set of states is {g, r, 2}.
By a slight abuse of notation, use z to index a generic state. Given the payoff structure

from Table 1, asset j has factor loading yj(z) on the state-z Arrow security, and factor

loadings perfectly capture asset payoffs. Since green and red trees can be combined to

replicate Arrow securities, all factors are traded. By no arbitrage, the factors thus have

well-defined prices q(z) and they are related to asset prices by

pj = ∑
z

yj(z)q(z).

Factor demands. We first show that factor-level demand elasticities are not useful for cap-

turing asset-level elasticities. Since the factors are traded, we can define a decision prob-

lem directly over state-contingent consumption c(z) with associated price q(z). There are

two notions of factor demand functions. In the first, we simultaneously choose demand

39



functions for all factors. This corresponds to the following decision problem:

max
c(r),c(g)

π2u(c(2)) + π1ρu(c(r)) + π1(1− ρ)u(c(g)) (Factor demand)

s.t. c(2) = W − q(r)c(r)− q(g)c(g).

Alternatively, we could derive the demand function for a single factor, holding other

factor exposures constant. For example, consider the demand for the green factor holding

fixed the exposure to the red asset. This corresponds to the conditional decision problem:

max
c(g)

π2u(c(2)) + π1ρu(c(r)) + π1(1− ρ)u(c(g)) (Cond’l factor demand)

s.t. c(2) = W − q(r)c(r)− q(g)c(g).

We next derive the solution to these problems in terms of relative portfolio shares.

Proposition 4 (Zero factor elasticities) Let ωF(z) = q(z)c(z)/W denote the factor-level port-

folio share. The conditional and unconditional relative portfolio shares satisfy

ωF(z)
ωF(2)

=
πz

π2
for z ∈ {r, g}.

Hence factor demand elasticities are equal to zero for any factor prices.

Proof. The solution is standard. The first-order condition for Arrow security z ∈ {r, g} is

π2q(z)u′(c(2)) = πzu′(c(z)), that is, q(z) =
πz

π2

u′(c(z))
u′(c(2))

.

Under log utility, this yields q(z) = πz
π2

c(2)
c(z) . Imposing the budget constraint yields

c(z)q(z) =
πz

π2
π2W = πzW, that is,

c(z)q(z)
W

= πz.

Since portfolio shares are invariant in prices, the elasticity is always zero.

The result shows that factor demand functions exhibit low elasticities for any prices

and any payoff structures. In particular, factor elasticities are zero for any value of ε. Since

asset-level elasticities are strictly decreasing in ε and diverge to infinity as ε → 0, knowl-

edge of the factor elasticities is not informative about the asset-level elasticities.
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It is difficult to infer asset-level elasticities from factor elasticities mainly because

no arbitrage ensures that factor prices are identical no matter through which asset factor

exposures are acquired. Hence there is no asset-level variation in factors that can be used

to identify cross-asset substitution.

Residual Demands We next measure residual demands in the case where factors do

not subsume all asset cash flows. Because factors fully capture cash flows in our baseline

model, we add idiosyncratic noise to green and red assets. The augmented payoff ỹj is

ỹj = yj + ηj,

where ηj is a random variable with mean µj, standard deviation σj that is uncorrelated

across assets. Volatility σj is small in order to study a small perturbation of our model.

Next, suppose that the factors are directly traded, either because Arrow securities

exist or because they are sufficiently many assets to form well-diversified factor portfo-

lios. Let qk denote the price of a unit of exposure to factor k and let each investor choose

factor quantities αi
k. An asset is a bundle of its factor exposures and the residual idiosyn-

cratic component ηj. By no arbitrage, there exists a well-defined price for ηj, say p̃j.

We can then model the portfolio choice in two steps. First, choose positions in the

underlying assets. Second, adjust factor positions to achieve desired factor exposures.

This leads to a natural conditional decision problem: controlling for factor exposures,

choose positions ãj for the idiosyncratic components of each asset. The solution to this

problem yields residual demand functions given fixed factor positions. To make this point

as simply as possible, assume as in Koijen and Yogo (2019) that the investor can invest in

some outside asset in elastic supply, and that p̃j are again relative prices with respect to

the outside good. Then the decision problem determining residual demand functions is

max
(ãj)

E[log(c̄ + ∑
j

ηj ãj)],

where

c = ∑
k

αkFk︸ ︷︷ ︸
≡c̄

+∑
j

ηj ãj

is the consumption process for the investor and c̄ is the (fixed) component of consumption
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that is due to factor exposures. As is standard, this problem can also be stated as:

max
(ω̃j)

E[log(c̄ + W ∑
j

ηj

p̃j
ω̃j)]

where ω̃j = p̃j ãj/Wj is the portfolio share of the residual component and we assume that

changes in demand for the idiosyncratic demand is accommodated by a change in the

demand for the outside asset. Since ηj is a payoff, ηj/ p̃j is a return.

To illustrate the determination of residual demand elasticities, fix c̄ = 1 (as is the

case in our model if y(z) = 1 and the residual component is small). Then a standard

approximation to this problem as in Campbell-Viceira yields the decision problem:

max
(ω̃j)

E
[
∑

j

ηj

p̃j
ω̃j

]
− W

2
V
[
∑

j

ηj

p̃j
ωj

]
.

Given that the idiosyncratic components are uncorrelated, optimal residual de-

mand functions (relative to the outside good) have the simple form

ω̃∗j =
µj p̃j

W̃ σ2
j

,

where σj is the variance of ηj. Observe that the residual elasticity is

∂ω̃∗j
∂ p̃j

p̃j

ω̃j
=

µj

W̃ σ2
j

p̃j

ω̃j
= 1.

This elasticity is low and constant, and uninformative about asset elasticities.

E Dynamic Trading

Consider a two-period variant of our baseline model. Trees are durable assets which pay

dividends in two periods. Investors trade at the beginning of each period, and consume

the per-period payoffs generated by their trees at the end of each period. The payoff

structure is the same as in our baseline framework, and the aggregate state processes

z ∈ {1, 2} and ι ∈ {g, r}, which determine payoffs, are i.i.d. across periods. The discount

factor is given by δ ∈ (0, 1).

We denote by St the aggregate state variable sufficient for determining prices,
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which naturally includes the aggregate distribution over investor wealth and tastes. We

use this structure to introduce potential variations in market prices over time. In particu-

lar, investors know the realization of S1 when forming portfolio allocations at date 1, and

their choices are also influenced by their expectations of S2.

We write the price of asset j ∈ J ≡ {g, r, 2} as a function of the aggregate state:

pj,t = Pj(St) for some endogenous function Pj. The state-contingent gross return on asset

j ∈ J is Rj(S2) =
Pj(S2)

Pj(S1)
. Given heterogeneity in tastes, a single investor will thus be

concerned with the fact that changes in the preferences or wealth of other investors can

induce changes in prices and, therefore, her perceptions of expected returns. It is suffi-

cient for our purposes to consider the decision problem of a single investor who takes

as given the stochastic process over the aggregate state. The investor’s wealth at the

beginning of period t is determined by the realized state and previous asset positions:

W i
t(a

i
t−1, St) = ∑j∈J Pj(St)ai

j,t−1.

We denote investor i’s purchases of trees at the beginning of period t ∈ {1, 2} by

ai
t = (ai

g,t, ai
r,t, ai

2,t), and we denote by ai
0 investor i’s exogenous endowment. The investor

i’s state variable at the beginning of period t ∈ {1, 2} consists of the portfolio of asset

positions purchased in the previous period, ai
t−1, and the current-period taste parameters

Θi
t = (θi

j,t)j∈{g,r,2}, which are permitted to evolve stochastically over time. The individual

state at the beginning of period t is therefore si
t = (ai

t−1, Θi
t).

We solve the problem by backwards induction, assuming that investors face short-

sale constraints. For ease of exposition, assume that green and red trees are perfect sub-

stitutes: ε = 0. In this case, the second-period choice between green and red trees is

bang-bang: the investor buys only green trees if θi
g,2/Pg(S2) > θi

r,2/Pr(S2), and only red

trees if the inequality is reversed. We then have the following characterization of the

second-period value function.

Lemma 2 (Value function) Let ε = 0 and u = log. The second-period value function satisfies:

Vi
2(s

i
2, S2) = H(Θi

2, S2) + log
(

W i
2(a

i
1, S2)

)
,

where H(Θi
2, S2) depends on investor i’s tastes and market prices in period 2, but is independent

of any investor choices at date 1.

Proof. Following the discussion of the static optimization problem, the second-period
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value function can be written as:

Vi
2(s

i
2, S2) = max

ai
2≥0

π1

[
ρu
(

θi
g,2yg(r)ai

g,2 + θi
r,2yr(r)ai

r,2

)
+ (1− ρ)u

(
θi

g,2yg(g)ai
g,2 + θi

r,2yr(g)ai
r,2

)]

+π2u

(
y(2)

P2(S2)

(
W i

2(a
i
1, S2)− Pg(S2)ai

g,2 − Pr(S2)ai
r,2

))
.

Since green and red assets are perfect substitutes (i.e., ε = 0), the solution to the second-

period decision problem is bang-bang, depending on whether θ2
g/Pg(S2) ≥ θ2

r /Pr(S2).

Suppose that this inequality holds (i.e., green trees are cheap). Then, the value of the

second-period problem is:

Vi
g,2(s

i
2, S2) = max

ai
g,2≥0

π1u
(

θi
g,2y(1)ai

g,2

)
+ u

(
y(2)

P2(S2)

(
W i

2(a
i
1, S2)− Pg(S2)ai

g,2

))
.

The first-order condition together with log utility yields

ai
g,2 =

π1W i
2(a

i
1, S2)

Pg(S2)
.

This means that

Vi
g,2(s

i
2, S2) = π1u

(
θi

g,2
π1y(1)W i

2(a
i
1, S2)

Pg(S2)

)
+ π2u

( y(2)
P2(S2)

π2W i
2(a

i
1, S2)

)
.

With log utility this can be written as

Vi
g,2(s

i
2, S2) = π1 log

(
θi

g,2

Pg(S2)

)
+ π2 log

(
1

P2(S2)

)
+ π1 log

(
π1y(1)

)
+ π2 log

(
π2y(2)

)
+ log

(
W i

2(a
i
1, S2)

)
.

Similarly, if θ2
g/Pg(S2) ≤ θ2

r /Pr(S2), the value of the second-period problem is:

Vi
r,2(s

i
2, S2) = π1 log

(
θi

r,2

Pr(S2)

)
+ π2 log

(
1

P2(S2)

)
+ π1 log

(
π1y(1)

)
+ π2 log

(
π2y(2)

)
+ log

(
W i

2(a
i
1, S2)

)
.
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Hence, the second-period value function is written as

Vi
2(s

i
2, S2) = max

{
Vi

g,2(s
i
2, S2), Vi

r,2(s
i
2, S2)

}
,

and it satisfies

Vi
2(s

i
2, S2) = H(Θi

2, S2) + log
(

W i
2(a

i
1, S2)

)
,

where

H(Θi
2, S2) =π1 max

{
log

(
θi

r,2

Pr(S2)

)
, log

(
θi

g,2

Pg(S2)

)}
+ π2 log

(
1

P2(S2)

)
+π1 log

(
π1y(1)

)
+ π2 log

(
π2y(2)

)
.

The separability of the value function into a taste component and a wealth compo-

nent follows from log utility. However, this feature is not essential for our results below.

What is important is that investors take into account future market prices when forming

portfolios. Indeed, weakening separability would further complicate identification.

Now turn to the first-period decision problem. Maintaining the assumptions of

log utility and normalizing P2(S1) = 1, we can then write the period 1 decision problem

under discount factor δ as:

Vi
1(s

i
1, S1) = max

ai
1≥0

(1− δ)

[
π1 log

(
y(1)

(
θi

g,1ai
g,1 + θi

r,1ai
r,1

) )
+ π2 log

(
y(2)

(
W i

1(a
i
0, S1)− Pg(S1)ai

g,1 − Pr(S1)ai
r,1

))]
+δEi

[
H(Θi

2, S2) + log
(

∑
j∈J

Pj(S2)ai
j,1

)]
,

where the expectation Ei is taken with respect to private tastes and the aggregate state

variable at date 2. Differentiating this object with respect to ai
j,1 yields (13).

F Tastes versus constraints

We use the three-asset economy with the following simplifying assumptions:
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(i) There are two types of investors, i ∈ {h, `}, each of which faces short-sale con-

straints. Tastes satisfy: θh
g = 1 + t and θh

r = 1− t, while θ`g = 1− t and θ`r = 1 + t.

(ii) Type h owns share γ ≥ 1
2 of the aggregate endowment of each tree.

(iii) There is no aggregate risk, y(1) = y(2) = 1 and π1 = 1
2 .

We begin with the baseline where investors face only short-sale constraints. In this

case, taste differences can lead to endogenous sorting in equilibrium.

First, look for an equilibrium in which type h specializes in green trees while type

` investor specializes in red trees. It follows from the first-order conditions with respect

to ah
g and a`r and the aggregate resource constraint on tree 2 that

pr

pg
=

1− ah
2

ah
2

and p1 ≡
pg + pr

2
=

π1

1− π1
= 1,

where the last equality follows from our simplifying assumptions. Substituting p1 and the

first-order condition with respect to ah
g into type h investor’s budget constraint, together

with the aggregate resource constraint, one can show:

(ah
2, a`2) = (γ, 1− γ).

Thus, if sorting occurs in equilibrium, then the prices satisfy

(pg, pr) =

(
2γ

π1

1− π1
, 2(1− γ)

π1

1− π1

)
= (2γ, 2(1− γ))

and the investors’ portfolio choices are

(ah
g, ah

r , ah
2) =

(
1
2

, 0, γ

)
and (a`g, a`r , a`2) =

(
0,

1
2

, 1− γ

)
.

To show that this constitutes an equilibrium, we need to show that the first-order condi-

tions with respect to ah
r and a`g hold at the zero holding. It can be seen that these first-order

conditions are met as long as type h’s incentive is satisfied:

γ ≤ γ ≡
θh

g

θh
g +

(y(1))2+ε2

(y(1))2−ε2 θh
r

=
θh

g

θh
g + θh

r
.

46



Next, we consider an equilibrium in which one type of investor, denoted by i,

holds both green and red trees while the other type specializes in one tree. Guessing that

c̃i(g) = c̃i(r) = c̃i(2), first-order conditions with respect to ai
g and ai

r imply that

(
pg, pr, p1

)
=
(

θi
g, θi

r, 1
)

.

Combining these conditions with the budget constraint implies that

ai
2 = (1− π1)ei

2 + π1
y(1)
y(2)

(θi
gei

g + θi
rei

r) =
ei

2 + θi
gei

g + θi
rei

r

2
.

We also guess and verify that i = h. Since type ` specializes in red, a`g = 0 and

ah
g = 1

2 . Then, by the aggregate resource constraint,

ah
r =

ah
2 − θh

gEg

θh
r

.

Since the first-order condition with respect to a`r yields a`r =
a`2
pr

, it follows from the

budget constraint that

a`2 = (1−π1)(e`2 + pge`g + pre`r) = 1−γ and a`r = (1−π1)
e`2 + pge`g + pre`r

pr
=

1− γ

pr
.

Thus, we obtain, as in the statement of the proposition,

a`r =
1− γ

2
E2 + θh

gEg + θh
r Er

θh
r

.

When γ > γ, it can be seen that ah
r > 0 and that the first-order condition with respect to

a`g at a`g = 0 is also met (i.e., a`g = 0).
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