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Motivation

Can we use data on portfolio holdings to understand how asset prices respond to shocks and policies?

Koijen Yogo (2019) propose an influential new methodology for asset pricing.

1. Estimate “IO-style” demand systems for assets and use them to conduct counterfactuals.

2. Object of interest: the asset-level demand elasticity – a partial derivative.

3. Allow investor-specific “tastes” for financial assets to account for portfolio heterogeneity.

Most striking substantive claim: demand elasticities are much lower than we thought.

We study the foundations and interpretation of this methodology.
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A brief history of thought

1. “Neoclassical asset pricing:” focus on relative prices, quantities mostly irrelevant.

2. Demand effects a la index inclusion: a notion of an aggregate demand curve.

3. High-frequency identification of aggregate effects of QE.

4. Intermediary asset pricing.

5. Asset demand systems: structurally estimate individual- and asset-level demand on portfolio data.
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Existing methods hew closely to IO, but financial assets present unique challenges

1. Central role of demand complementarities and portfolios rather than good-specific demand.

2. Cross-asset price restrictions through equilibrium price determination and no arbitrage.

3. Resale considerations: current demand depends on future prices.
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Main Insights

1. Demand complementarities and equilibrium spillovers can heavily bias measured elasticities.

• In current frameworks, measured elasticities may be near one even if true elasticities are near infinite.

• Control variables do not address this issue – in fact, they change the object of analysis.

2. A general tension between demand estimation and no arbitrage.

• Except in narrow edge cases, asset-level demand elasticities are not (non-parametrically) identified.

• In most instances, demand elasticities primarily reflect ex-ante theoretical restrictions.
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Framework



Basic considerations

We want a simple theoretical laboratory to model asset demand estimation.

To align with current the dominant approach, we allow heterogeneous tastes for financial assets.

Paper analyzes this in more detail.

1. Taste disagreement is critical for identification – need mutually orthogonal demand shocks.

2. This disagreement can lead to violations of no arbitrage – precisely because valuations differ.

Practical concern because most applications rely on assumptions like factor structures.

For today, will simply assume that I have access to a clean asset-level supply shock.
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Framework

• Investor i can choose consumption at date 0 or at date 1. Assume log utility.

• State z ∈ Z ≡ {1, . . . ,Z} with probability πz ∈ (0, 1).

• Assets J ≡ {1, . . . , J} with price pj and state-contingent cash flows yj(z).

• A portfolio of assets (aij)j∈J .

• Investors receive asset endowments e ij and non-marketable endowment w i
0 and w i

1(z).

• Prices taken as given by each investors, ultimately determined by market clearing.
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Incorporating tastes

Given asset-specific taste parameter θij , investor i evaluates asset j ’s payoff yj(z) as θijyj(z).

Then define utility over taste-adjusted consumption

c̃ i1(z) ≡
∑
j

θijyj(z)aij + w i
1(z).

This allows us to use the standard machinery of expected utility. Moreover:

• If we let θij = 1 for all j we recover the standard model.

• Close connection to dogmatic belief over scale of the payoff.
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Taste-augmented portfolio choice problem

Our approach leads to a simple generalization of the standard problem:

max
(ai1,a

i
2,...,a

i
J

)
(1− δ)u(c i0) + δ

∑
z

πzu
(
c̃ i (z)

)
+ continuation value

s.t. c̃ i1(z) ≡
∑
j

θijyj(z)aij + w i
1(z),

c i0 +
∑

pj(a
i
j − e ij ) = w i

0,

ad-hoc portfolio restrictions or mandates.

We model tastes over payoffs, not returns. This allows for endogenous return spillovers.
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What is an asset-level demand function?

Portfolio choice models generate predictions for quantities to be bought of any given asset, say

aij(~p) : a function of the vector of all asset prices

Asset-level demand functions can be described using the notion of a demand elasticity.

This reflects thought experiment in which we vary a single asset price. This is a partial derivative:

E ijs ≡ −
∂aij(~p)

∂ps

ps
aij(~p)

.

Identification problem: given shock χs to asset s, observational data shows only the total derivative:

Ê iss ≡ −
daij
dχs

dps
dχs

· ps
aij
.
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Deriving demand functions

The first-order necessary condition for the optimal choice of with respect to aij is:

θij
∑
z∈Z

yj(z)
ui′(c̃ i (z))

ui′(c i0)
+ Lagrange multipliers − pj︸ ︷︷ ︸

≡ Net marginal value F i
j (ai , p)

= 0.
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Deriving demand functions

Asset-level demand functions are jointly determined by a system of equations (+ constraints):


F i

1(ai , p)

F i
2(ai , p)

...

F i
J(ai , p)

 =


0

0

...

0

 ,

This system typically exhibits demand complementarities: marginal value of asset j depends on ai−j .

1. Diversification: marginal value depends on covariance with portfolio.

2. Constraints: investment mandates which allow substitution between some assets.
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Response to an exogenous supply shock χs to asset s.

Total derivative of i ’s portfolio in response to the shock is:

dai1
dχs

...

dais
dχs

...

daiJ
dχs


=



∂ai1
∂p1

· · · ∂ai1
∂ps

· · · ∂ai1
∂pJ

...
. . .

...
. . .

...

∂ais
∂p1

· · · ∂ais
∂ps

· · · ∂ais
∂pJ

...
. . .

...
. . .

...

∂aiJ
∂p1

· · · ∂aiJ
∂ps

· · · ∂aiJ
∂pJ


︸ ︷︷ ︸

Quantity responses



dp1
dχs

...

dps
dχs

...

dpJ
dχs


︸ ︷︷ ︸

Price spillovers

+



∂ai1
∂χs

...

∂ais
∂χs

...

∂aiJ
∂χs


︸ ︷︷ ︸

Income effects

.

Structural elasticities obscured by cross-asset interactions and equilibrium price spillovers Sjs ≡
dpj
dχs

.
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Observed versus structural elasticity

Proposition: The observed own-price elasticity Ê iss can be decomposed as follows:

Ê iss = E iss −
∑
j 6=s

Sjs 1
pj

dps
dχs

1
ps

E isj︸ ︷︷ ︸
Complementarities

−
∂ais
∂χs

1
ais

dps
dχs

1
ps︸ ︷︷ ︸

Income effects

. (1)

Intuition in a simple example. Investor chooses between bond and two similar stocks.

1. Holding other price fixed, a price change triggers rapid reallocation to other stock (E isj is large).

2. If many investors attempt to do this, other price must adjust.

3. Once prices adjust, there is no need to adjust your portfolio.
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How to isolate the structural elasticity from the observed one?

Generic answer: one must place restrictions on the substitution matrix.

Approach from IO: discrete choice over goods with homogeneous substitution to an “outside good.”

KY use a similar system: “logit” demand for financial assets conditional on characteristics.

1. Impose assumptions on returns to sharply reduce scope for cross-asset spillovers.

2. Yields homogeneous substitution in units of portfolio weights relative to an outside asset.
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The KY logit demand framework

Assume equilibrium returns follow a factor structure with diagonal conditional covariance matrix.

This means there are no complementarities left to worry about conditional on the factors.

Demand in units of relative portfolio weights assumed to depend only on own prices and characteristics:

ωj(p)

ωout(p)
=

ωj

ωout
(pj) = exp

{
β0 log pj +

K−1∑
k=1

βkxk(j) + βK

}
ζ(j),

Identification: if xk(j)’s are invariant to supply shocks, observed and structural elasticity are identical.

⇒ can identify β0 from observed portfolio changes given exogenous price changes.

⇒ because demand is separable across assets, need only one price instrument per asset.

Problem: Returns and substitution are endogenous. Does logit demand generate a factor structure?
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Back to our graph
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Do equilibrium returns and substitution

patterns satisfy the logit structure?



Our approach

We derive equilibrium portfolio choices alongside returns in a canonical framework.

• In particular, enrich Lucas ’78 with payoff-augmenting tastes and mandates.

• As in KY, use log utility for simplicity (but this isn’t necessary).

Use this model to compute true and measured elasticities based on the logit structure.
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A minimal asset menu

• Two aggregate states, z = 1, 2 with prob. πz = 1
2
. For each z , one tree that pays 1 in z only.

• Split Tree 1 into green and red halves with diversifiable risk. Green half pays better in green state.

State 1
State 2

Green shock (1− ρ) Red shock (ρ)

Tree 1
g reen 1 + ε 1− ε

0
red 1− ε 1 + ε

Tree 2 0 1

• Parameter ε measures complementarity between assets. Tastes can be defined over colors: (θig , θ
i
r ).

• Contrast with logit: heterogeneous substitution across assets if and only if ε < 1.
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Endowments and demand system implementation

• Tree 2 is the outside asset with normalized price p2 ≡ 1. Relative prices pr and pg .

• Endowments E2 = 1, Er = 1
2

and Eg = 1
2

+ ψ. Use ψ as an exogenous supply shock.

• As in KY, define demand in units of portfolio shares relative to the outside good,
ωi
j (p)

ωi
2(p)

, so that

E ijj ≡ −
∂(ωi

j (p)/ωi
2(p))

∂pj

pj
ωi
j (p)/ωi

2(p)
and Ê ijj ≡ −

d(ωi
j (p)/ωi

2(p))

dpj

pj
ωi
j (p)/ωi

2(p)
.

• NB: For the basic point, sufficient to assume no constraints or tastes over assets, θij = 1.
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The logit bias in portfolio shares

Supply variation ψ is a clean instrument for pg : fully exogenous to all investors in the model.

Under the hypothesis of logit demand, structural elasticity = observed elasticity, E ijj = Ê ijj .

Proposition: Let Bi
jj ≡ E ijj − Ê ijj denote the “logit bias.” This bias is given by

Bi
jj = −

∂
(
ωi
j (p)/ωi

2(p)
)

∂p−j︸ ︷︷ ︸
Complementarity

p−j(
ωi
j (p)/ωi

2(p)
) pj
p−j︸ ︷︷ ︸

Scaling terms

dp−j

dpj︸ ︷︷ ︸
Price Spillover

.
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Equilibrium demand functions

Contra logit, equilibrium demand functions depend on both prices for all ε < 1.

ωi
g (pg , pr )

ωi
2(pg , pr )

= θir
π1

π2
pg ·

(θirpg + θigpr )ε
2 − (θirpg − θigpr ) + 2θigpr ε(1− 2ρ)

(θirpg + θigpr )2ε2 − (θirpg − θgpr )2
; (2)

ωi
r (pg , pr )

ωi
2(pg , pr )

= θig
π1

π2
pr ·

(θirpg + θigpr )ε
2 + (θirpg − θigpr )− 2θirpg ε(1− 2ρ)

(θirpg + θigpr )2ε2 − (θirpg − θigpr )2
. (3)
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Bias between observed and structural elasticity

Proposition. For a small shock to green supply ψ, the logit bias satisfies

Bgg =
(1− ε2)2(1 + (1− 2ρ)ε)

8ε2ρ(1− ρ)((1 + ε)2 − 4ερ)
.

The bias is positive, is strictly decreasing in ε, goes to infinity as ε→ 0, and is zero iff ε = 1.

In particular, in the limit as red and green assets become perfect substitutes, we have

lim
ε→0
Egg =∞ and lim

ε→0
Êgg = 1
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Measured versus structural elasticities (log scale)
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Interpretation

• When ε < 1, controlling for outside demand not sufficient to capture actual substitution patterns.

• Given spillovers, observed elasticity is determined by substitution towards state-1 consumption.

• Consumption elasticities can be low even if the asset-level elasticity is extremely high.

• The response in KY25 does not address this problem – their estimator performs even worse.

Details
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Control variables change the the estimand

One proposed solution to spillover biases is the use of controls, such as factors or characteristics.

– “If spillovers occur mainly among similar assets, we should control for asset similarity.”

This changes the unit of analysis to residual cash flows (rather than the asset).

– Assets might be substitutable precisely because they have common factor exposures.

Problem: residual cash flow elasticities may be uninformative about asset-level elasticities.

Details
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Trilemma for Asset Demand Estimation



Two questions

1. When can asset-level elasticities be (nonparametrically) identified from observational data?

Can ideal asset-level supply shocks reveal substitution patterns beyond those implied by theory?

2. Is asset-level demand estimation the right paradigm for empirical analysis of portfolio data?
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General limits to asset demand identification

It is impossible to simultaneously maintain that:

1. investors have preferences over payoffs,

2. prices satisfy no arbitrage,

3. asset-level demand elasticities are identified from supply shocks to individual securities.

Reason: cross-asset restrictions from (1) and (2) prevent ceteris paribus price variation.

Exceptions: the asset menu consists of Arrow securities, or one has many independent experiments.
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Environment is the same as before

• Disregard “tastes” for now (θij = 1).

• Markets can be complete or incomplete.

• p is the vector of asset prices, q is the vector of state prices (need not be unique).

29



Benefits of No Arbitrage in Demand Estimation

1. Ensures well-defined demand functions.

2. It is practically important to reduce dimensionality of choice sets (e.g., using characteristics).

3. It is a weak requirement on equilibrium play that ensures consistency in counterfactuals.

Assumption 1. There is no arbitrage,

p = Yq.

We use a strict definition, but similar issues are at play with “approximate arbitrage.”
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Translating demand elasticities

“How does asset demand change if asset price pj changes but all other asset prices remain fixed?”

⇒ “How do investors respond to the state price changes induced by an shock to asset prices?”
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State price changes in an ideal experiment

Let Y + denote the Moore-Penrose inverse. Given no arbitrage, q = Y +p.

Lemma. Let vj denote the unit vector in RJ with 1 in the j-th position and zeros elsewhere. Then the

changes in state prices given the exogenous variation in a single price pj satisfy

∆qideal ≡ ∂q

∂pj
= Y +vj .

Elasticity measurement requires state price variation proportional to the inverse payoff matrix.
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Identification from (ideal) supply shocks

Assume that we have an “ideal” laboratory with exogenous shocks to the supply of some asset j .

• For example, an outside investor helicopter drops an asset for purely exogenous reasons.

Does the resulting price variation identify a demand elasticity with respect to price pj?
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To understand equilibrium effects, we impose only a weak (and favorable) condition

Definition (Separable downward-sloping consumption demand)

Consumption demand is separable downward-sloping if ∃ a strictly positive Z ×Z diagonal matrix V s.t.

∆qsupply
j ≡ ∂q

∂Ej
= −VyT

j for all assets j ,

– Standard interpretation: V captures the marginal utility of the marginal investor.

– V diagonal is perhaps the best case – no direct cross-state spillovers from supply shocks.

State price changes induced by supply shocks are proportional to the payoff matrix itself.
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Do supply shocks generate the “ideal” state price variation? (Strict version)

Condition 1 (Identical Variation)

A supply shock to asset j generates the ideal state price variation if there exists a scalar kj such that

∆qideal
j = kj∆qsupply

j .
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Do supply shocks generate the “ideal” state price variation? (Weak version)

Condition 2 (Variation of the same sign)

The supply shock generates state price variation of the same sign if, element by element,

sign(∆qideal
j ) = sign(∆qsupply

j )

Since Y has weakly positive entries, this condition holds for all j if Y + has only weakly positive entries.
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Trilemma

Definition. Assets j and j ′ have overlapping payoffs if there exists at least one state z such that

yj(z) > 0 and yj′(z) > 0.

Theorem (Trilemma). If Conditions 1 or 2 are satisfied, then YYT is diagonal, and:

(i) If YYT is diagonal, then there are no assets with overlapping payoffs.

(ii) If markets are complete, then YYT is diagonal if and only if Y is diagonal up to permutations.

“Proof.” Plemmons and Cline (PAMS, 1972).
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Interpretation

1. Asset supply shocks affect behavior because change the cost of consumption (i.e., state prices).

2. Under no arbitrage, supply shocks affects the price of other assets with overlapping payoffs.

3. Only exception: Arrow securities (or a suitable generalization to incomplete markets).

4. No overlapping payoffs is much stronger than orthogonal payoff distributions.

Arrow securities eliminate the distinction between asset demand and consumption demand.
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Overcoming the Trilemma?



1. Multiple independent experiments

Suppose you were willing to work with linear demand. Write investor i ’s asset demand function as

ai = āi + Si (p − p̄) + εi , (4)

Suppose we have N distinct experiments generating data on prices and quantities for investor i ,

G ≡
[

∆p(1), . . . ,∆p(N) ] ∈ RJ×N , (5)

∆Ai ≡
[

∆a
(1)
i , . . . ,∆a

(N)
i

]
∈ RJ×N . (6)

Then we can write this as the linear system:

∆Ai = Si G + Ui , (7)
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Complete Identification given N = J

Let N = J. The unique ordinary least-squares estimator of Si is

Ŝi = ∆Ai G
+, (8)

where Ŝi is an unbiased and consistent estimator of Si . When Ui = 0, Ŝi = Si .
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Incomplete Identification with N < J

Let PG ≡ GG+ be the orthogonal projector onto col(G), the column space of the matrix of observed

price changes G . Then the general solution to the least-squares problem is

Si = ∆AiG
+ + Bi (I − PG ), Bi ∈ RJ×J (9)

where Bi is an arbitrary matrix that is entirely unrestricted by the data.

Only the projection onto observed shocks is identified; elasticities in the null space are unbounded.
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2. Theoretical restrictions

One can always achieve parametric identification using structural restrictions (aka a model).

These restrictions must be evaluated on first principles: the data is silent.

Specifically, structural models must capture the cross-asset spillovers which are endemic to asset pricing.
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Relative elasticities



An alternative: measuring relative elasticities

• Haddad et al. (2025): under slightly weaker symmetry, one can identify the “relative elasticity.”

i.e., the own-price minus the cross-price elasticity.

• Clarifies the identification challenge and partially circumvents it using a different estimand.

• Substitution matrix must be decomposed into unobservables and observable “controls.”

• Controls strongly change the interpretation, and small misspecification can lead to large biases.
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A perturbed payoff structure and relative elasticities

State 1
State 2

Green shock (1− ρ) Red shock (ρ)

Tree 1
g reen 1 + ε 1− ε 0

red 1− ε 1 + ε δ

Tree 2 0 1− δ
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Asymmetries and potential bias in relative elasticities
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Figure 3: The Measured and True Relative Elasticities: δ ∈ {0.01, 0.1}.

Concern: Assets are more likely going to be closer substitutes when they are more symmetric.
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Are demand elasticities structural?



Counterfactuals from demand systems

Growing interest in using demand systems for counterfactuals and policy.

Should demand elasticities be interpreted as “deep” parameters?

• Require invariant parameters to appropriately inform policymakers.

Even beyond spillovers, we find that two problems limit structural interpretation:

1. Dynamic trading: demand elasticities alone cannot identify whose tastes affect current demand.

2. One can rationalize a portfolio by constraints or preferences – but counterfactuals differ.
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Conclusion

We study the methodological foundations of demand-based asset pricing, relying on principles of

portfolio choice and equilibrium price determination.

1. Tastes may invalidate the organizing principle of no arbitrage.

2. Price spillovers offer a simple explanation for low measured elasticities.

3. Generic tension between no arbitrage and asset-level demand analysis.

. . . Lots of work to be done.
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Appendix



Koijen Yogo 2025



Koijen Yogo (2025) argue we used the wrong benchmark

Their abstract states:

[...] FFN25 use an incorrect [within-asset] estimator for their central claim that “measured

elasticities are near one even if true elasticities are near infinite.” The cross-sectional instru-

mental variables estimator correctly identifies the demand elasticities in KY19 and FFN25.

The cross-sectional estimator they propose is:

β̂0 = −Cov(logωj(ψ), zj)

Cov(log pj(ψ), zj)
.

Importantly, they conduct their analysis with an approximation rather than the exact estimator and

their approximation is only valid under knife-edge symmetry assumptions.
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Response to the Response

Proposition (Bias in the cross-sectional estimator)

If ρ 6= 1
2
, the KY approximation is invalid and the exact value of the KY25 estimator β̂0 satisfies

lim
ψ→0

β̂0,exact(ψ) = −1,

which is of the opposite sign as, and does not vary with, the structural elasticity Egg .

If ρ = 1
2
, then the KY approximation is accurate and equation (B18) of KY25 holds,

lim
ψ→0

β̂0,exact(ψ) =
1

ε2
− 1.
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Response to the Response
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Figure 4: Estimators given a small violation of perfect symmetry (ρ = 0.495.) We use an approximate log scale
to accommodate negative values.
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What’s going on?

In the model at hand, the cross-sectional estimator can be computed exactly:

β̂0,exact =− log(ωg (ψ))− log(ωr (ψ))

log(pg (ψ))− log(pr (ψ))
.

It is exceedingly hard to separate own- and cross-price elasticities from a single equilibrium allocation!

KY25 do not actually use the exact estimator. Instead, approximate demand and prices around ψ = 0,

β̂0 ≈ β̂0,approx ≡−
Cov

(
d logωj

dψ
ψ, zj

)
Cov

(
d log pj
dψ

ψ, zj
) = −

d(log(ωg (ψ))−log(ωr (ψ)))

dψ

d(log(pg (ψ))−log(pr (ψ)))

dψ

.

Since β̂0 = F (ψ)/G(ψ), this is valid only if F (0) = G(0) = 0. This requires perfect symmetry, ρ = 1
2
.

Back
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Decision Problem with Traded Factors



Decision problem with traded factors

In our setting, the aggregate income in a given state is a factor (there are of course others).

• For example, the green asset has loadings 1 + ε and 1− ε on state g and r income.

• To allow non-factor variation, perturb the model with small idiosyncratic noise, y ′j = yj + ηj .

Given this structure, we can model portfolio choice as a two-step problem:

1. Choose desired factor exposures (i.e. state-contingent consumption cz) at price qz .

2. Given cz , choose how much idiosyncratic asset exposure w̃j to take on at price p̃j .

Controlling for factor exposures means focusing on the second step: a conditional decision problem.

Substitution across assets is now driven only by the idiosyncratic component. A residual elasticity.
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Factor and residual elasticities

Consider a small perturbation, Var(ηj) ≈ 0. Then optimal factor demand in portfolio shares is

czqz
W

= πz .

The factor-level demand elasticity is zero (and thus very different from the asset elasticity.)

Fix factor exposures at 1 (as in the baseline model). The elasticity of residual demand is

∂ω̃∗j
∂p̃j

p̃j
ω̃j

= 1.

Highly non-linear: underlying elasticities are low even when the asset-level elasticity is very high.

Back
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Structural Interpretation



I. Dynamic trading

Except in special cases, financial assets are investment goods.

Investor demand depends on both own prefer and expected market returns (i.e., others’ tastes).

⇒ Observed demand elasticities alone cannot identify whose tastes affect current demand.

But, for many counterfactuals we do need to be able to attribute tastes to investors.
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Concern 2: Preferences vs latent constraints

One can Problem: counterfactuals are generally sensitive to the precise micro-foundation.

Figure 5: Equilibria in an economy with taste differences and one with portfolio restrictions on green asset share.
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